
LZD Factorization: Simple and Practical Online
Grammar Compression with Variable-to-Fixed
Encoding
Keisuke Goto
Department of Informatics, Kyushu University, Japan
keisukegotou@gmail.com

Hideo Bannai
Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

Shunsuke Inenaga
Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

Masayuki Takeda
Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
We propose a new variant of the LZ78 factorization which we call the LZ Double-factor factorization
(LZD factorization). Each factor of the LZD factorization of a string is the concatenation of the
two longest previous factors, while each factor of the LZ78 factorization is that of the longest
previous factor and the following character. Interestingly, this simple modification drastically
improves the compression ratio in practice. We propose two online algorithms to compute the
LZD factorization in O(m(M + min(m,M) log σ)) time and O(m) space, or in O(N log σ) time and
O(N) space, where m is the number of factors to output, M is the length of the longest factor(s),
N is the length of the input string, and σ is the alphabet size. We also show two versions of our
LZD factorization with variable-to-fixed encoding, and present online algorithms to compute these
versions in O(N + min(m, 2L)(M + min(m,M, 2L) log σ)) time and O(min(2L,m)) space, where
L is the bit-length of each fixed-length code word. The LZD factorization and its versions with
variable-to-fixed encoding are actually grammar-based compression, and our experiments show that
our algorithms outperform the state-of-the-art online grammar-based compression algorithms on
several data sets.
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1 Introduction

Large-scale, highly repetitive texts such as collections of genomes of the same or similar
species or the edit history of version controlled documents, have been increasing. Grammar
compression algorithms, which are compression algorithms that output a compressed rep-
resentation of the input text in the form of a context free grammar (CFG), have recently
been gaining renewed interest since they are effective for such text collections [3], and also
since CFGs are a convenient compressed representation that allows for various efficient
processing on the strings without explicit decompression, e.g. pattern matching [13], q-gram
frequencies [4], and edit-distance [5] computation.
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2 LZD Factorization

While many previous grammar compression algorithms such as RE-PAIR [6] or SEQUITUR [10]
give good compression ratios and run in linear time and working space, smaller working
space is essential in order to compress large-scale data that does not fit in main memory.
Maruyama et al. [7] proposed a fast and space efficient algorithm OLCA, which uses a simple
strategy to determine the priority in selecting pairs of consecutive characters to form a
production rule. Their algorithm runs online, and the working space depends only on the
output, i.e., the compressed size of the input string. The working space was further reduced
to the information theoretic lower bound of the output size in [9]. Maruyama and Tabei [8]
proposed a variant that uses only constant working space, at the cost of some degradation
in the compression ratio. Sekine et al. [12] proposed a modified version of RE-PAIR, called
ADS, that splits the input string into blocks and compresses each block. In order to maintain
a good compression ratio, they devised a technique to reuse non-terminal variables that are
created and used frequently in each block, to the next block. Each non-terminal variable is
encoded as a fixed-length code word, and since the length of the decompressed string that a
code represents may vary, it is a variable-to-fixed code. The algorithm runs in O(N) time
and O(B + 2L) working space, where N is the length of the input string, B is the block size,
and L is the bit-length of each fixed-length code word.

In this paper, we propose a new grammar-based compression based on the LZ78 factor-
ization, which we call the LZ Double-factor factorization (LZD factorization). While each
factor of the LZ78 factorization of a string is the longest previous factor and the following
character, each factor of the LZD factorization is the concatenation of the two longest
previous factors. We propose two online algorithms to compute the LZD factorization in
O(m(M + min(m,M) log σ)) time and O(m) space, or in O(N log σ) time and O(N) space,
where m is the number of factors to output, M is the length of the longest factor(s), N is the
length of the input string, and σ is the alphabet size. We also show two versions of our LZD
factorization with variable-to-fixed encoding, and present online algorithms to compute these
versions in O(N + min(m, 2L)(M + min(m,M, 2L) log σ)) time and O(min(2L,m)) space,
where L is the bit-length of each fixed-length code word. When L can bee seen as a constant,
these algorithms run in O(N) time and O(1) space. Computational experiments show that,
in practice, our algorithms run fast and compress well while requiring small working space,
outperforming the state-of-the-art online grammar-based compression algorithms on several
data sets.

2 Preliminaries

Let Σ be a finite alphabet, and let σ = |Σ|. An element of Σ∗ is called a string. The length of
a string T is denoted by |T |. The empty string ε is the string of length 0, namely, |ε| = 0. For
a string T = XY Z, X, Y and Z are called a prefix, substring, and suffix of T , respectively.
If a prefix X (resp. substring Y , suffix Z) is of a string T is shorter than T , then it is called
a proper prefix (resp. proper substring, proper suffix) of T . The set of suffixes of T is denoted
by Suffix(T ).

The i-th character of a string T is denoted by T [i] for 1 ≤ i ≤ |T |, and the substring of
T that begins at position i and ends at position j is denoted by T [i..j] for 1 ≤ i ≤ j ≤ |T |.
For convenience, let T [i..j] = ε if j < i. For convenience, we assume that T [|T |] = $, where $
is a special delimiter character that does not occur elsewhere in the string.

The Patricia tree of a set S of k strings, denoted PTS , is a rooted tree satisfying the
following: (1) each edge is labeled with a non-empty substring of a string in S, (2) the labels
of any two distinct out-going edges of the same node must begin with distinct characters; (3)
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for each string s ∈ S there exists a node v such that str(v) = s, where str(v) represents the
concatenation of the edge labels from the root to v; (4) a string p is a non-empty prefix of a
string s ∈ S iff there are nodes u, v such that u is the parent of v, str(u) is a proper prefix of
p, and p is a prefix of str(v). Because of conditions (2)-(4), there are at most k non-branching
nodes (including leaves) and at most k − 1 branching nodes in PTS . Also, if we represent
each edge label ` by a pair of the beginning and ending positions of an occurrence of ` in
one of the strings in S, then PTS can be stored in O(k) space (excluding the string S). For
a node u of PTS , let depth(u) = |str(u)|. If the string p of Condition (4) is str(v) itself,
then we say that p is represented by an explicit node of PTS . Otherwise (if p is a proper
prefix of str(v)), then we say that it is represented by an implicit node of PTS .

The suffix tree of a string T , denoted STT , is the Patricia tree of Suffix(T ), namely
STT = PTSuffix(T ). Since we have assumed T terminates with a special character $, there
is a one-to-one correspondence between the suffixes of T and the leaves of STT . STT has
at most 2N − 1 nodes, and can be stored in O(N) space, where N = |T |. For a string T of
length N over an alphabet of size σ, STT can be constructed in O(N log σ) time and O(N)
space in an online manner [14].

3 LZD Factorization

We propose a new greedy factorization of a string inspired by the LZ78 factorization [16],
which is able to achieve better compression ratios. We simply change the definition of a factor
fi, from the pair of the longest previously occurring factor and the immediately following
character, to the pair of the longest previously occurring factor fj1 and the longest previously
occurring factor fj2 which also appears at position |f1 · · · fi−1| + |fj1 | + 1. We call this
new factorization the LZ Double-factor factorization (LZD), and its formal definition is the
following:

I Definition 1 (LZD Factorization). The LZD factorization of a string T of length N , denoted
LZDT , is the factorization f1, . . . , fm of T such that f0 = ε, and for 1 ≤ i ≤ m, fi = fi1fi2
where fi1 is the longest prefix of T [k..N ] with fi1 ∈ {fj | 1 ≤ j < i} ∪ Σ, fi2 is the longest
prefix of T [k + |fi1 |..N ] with fi2 ∈ {fj | 0 ≤ j < i} ∪ Σ, and k = |f1 · · · fi−1|+ 1.

Note that for any 1 ≤ i < m the length of fi is at least 2, while fm can be of length 1.
This happens only when |f1 · · · fm−1| = N − 1.

LZDT = f1, . . . , fm can be represented by a sequence of m integer pairs, where each pair
(i1, i2) represents the ith factor fi = fi1fi2 . For example, the LZD factorization of string
abaaabababaabbbbabab$ is f1 = ab, f2 = aa, f3 = abab, f4 = abaa, f5 = bb, f6 = bbabab,
f7 = $, and can be represented by (a, b), (a, a), (1, 1), (1, 2), (b, b), (5, 3), and ($, 0).

One can regard LZDT as a context-free grammar which only generates string T , with
m + 1 production rules S → f1 · · · fm, fi → fi1fi2 for 1 ≤ i ≤ m, where the set of rules
fi → fi1fi2 (1 ≤ i ≤ m) is called the dictionary.

I Lemma 2. For any string T , all factors of LZDT are different.

Proof. Let LZDT = f1, . . . , fm. Since fm[|fm|] = $, fm is different from any other factors.
Assume on the contrary that fh = fi for some 1 ≤ h < i < m. Since both fi1 and fi2 are
of length at least 1, |fi1 | < |fi|. However, we have assumed fh = fi, and this contradicts
that fi1 is the longest prefix of T [|f1 · · · fi−1|+ 1..N ] which belongs to {fj | 1 ≤ j < i} ∪ Σ.
Hence each factor fi is distinct. J

Using the idea of [16] and Lemma 2, we get the following lemma:
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I Lemma 3. For any string T of length N , the number of factors in LZDT is O(N/ logσ N).
a

a
b

a b

$
b

a

0

1
2

34

5

6

7

b
b

b
ba

Figure 1 The LZD tree for string
abaaabababaabbbbabab$. Each
node numbered i represents the ith
factor fi of the LZD factorization of
the string.

Let F = {f0, . . . , fm} be the set of factors of LZDT .
In a similar way to the case of LZ78 factorization, comput-
ing LZDT reduces to computing PTF , the Patricia tree of
F . We call PTF the LZD tree of T . Fig. 1 illustrates the
LZD tree of the example string abaaabababaabbbbabab$.

In what follows, we will propose two algorithms to
compute LZDT for a given string T of length N in an
online manner. The first one is space-efficient, namely,
its extra space usage is linear in the number of factors
in LZDT . The second one is fast, namely, it runs in
O(N log σ) time.

3.1 Space-efficient
online algorithm for LZD factorization
We present an online algorithm to compute LZDT for a string T of length N in O(m(M +
min{M,m} log σ)) time using O(m) working space, where m is the number of factors in
LZDT and M is the length of the longest factor in LZDT .

The LZD tree of a given string T can be computed incrementally, in quite a similar way
to the LZ78 trie [16], as follows: We first construct a tree only with the root. To compute a
factor fi = fi1fi2 starting at a position k = |f1 · · · fi−1|+ 1, we assume that the LZD tree
contains nodes which represent all previous factors f1 to fi−1, and these nodes are marked.
We also assume that the LZD tree contains nodes which represent all characters occurring in
T [1..|f1 · · · fi−1|], and these nodes are marked. Let T [k..q] be the longest prefix of T [k..N ]
that is represented by the LZD tree, where k ≤ q ≤ N . This string T [k..q] can be computed
by traversing the tree from the root. If k is the first occurrence of character c = T [k] (namely
q = 0), then we create a new child of the root representing c, and mark this node. The
first element fi1 is c in this case. Otherwise, since there are at most min(m − 1,M − 1)
branching nodes in any path of the LZD tree, and since depth(v) ≤M for any leaf v, the
number of character comparisons to compute T [k..q] is O(M + min(m,M) log σ). Then, the
lowest marked node in the path which spells out T [k..q] is exactly the first element fi1 of fi.
The second element fi2 of fi can be computed analogously, traversing the LZD tree with
T [k + |fi1 |..N ] in O(M + min(m,M) log σ) time. After computing fi, we update the LZD
tree so that fi is represented by an explicit marked node in the tree. Recall that in the LZD
tree there always exists a path spelling out fi1 from the root. We traverse fi2 from the end
of this path, to compute the longest prefix y of fi that is represented by the current LZD
tree. There are four cases to consider:

1. If y = fi and fi is represented by an explicit node u (i.e., str(u) = fi), then we simply
mark u. Note that, by Lemma 2, u was always unmarked before computing fi.

2. If y = fi and fi is represented by an implicit node, then we create a new internal non-
branching node v such that str(v) = fiby splitting the edge on which the path spelling
out fi ends. We then mark v.

3. If |y| < |fi| and fi is represented by an explicit node u, then we create a new leaf node v
such that str(v) = fi, with a new edge from u to v. We then mark v.

4. If |y| < |fi| and fi is represented by an implicit node, then we first create a new internal
node u such that str(u) = y, by splitting the edge on which the path spelling out y ends.
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Next, we create a new leaf node v such that str(v) = fi, with a new edge from u to v.
We finally mark v.

Since we repeat the above procedure m times, it takes a total of O(m(M + min(m,M) log σ))
time to compute the LZD tree for all the factors. Notice that N ≤ mM , and hence N is
hidden in the above time complexity. Since the LZD tree is the Patricia tree for the set
of m factors of LZDT , the size of the tree (and hence the extra space requirement of this
algorithm) is O(m).

Since LZDT is a kind of context-free grammar which only generates string T , we can
obtain the original string T in O(N) time from LZDT .

The following theorem summarizes this subsection.

I Theorem 4 (Space-efficient online LZD factorization). Given a string T of length N , we
can compute LZDT = f1 · · · fm in O(m(M + min(m,M) log σ)) time and O(m) space in an
online manner, where M is the length of the longest factor in LZDT .

Sincem = O(N/ logσ N) andM = O(N)1, the space-efficient algorithm takesO(N2/ logσ N)
time. However, we have not found an instance which gives the above bound. As we will see
in Section 5, this algorithm runs fast in practice.

3.2 Fast online algorithm for LZD factorization
Here, we present a fast online algorithm to compute LZDT for a given string T of length
N . Our algorithm uses the suffix tree STT of a given string T . Since every factor fi of
LZDT = f1, . . . , fm is a substring of T , it is also represented by either an implicit or explicit
node of STT . Hence we have the following observation: For any string T , the LZD tree for
LZDT can be superimposed on STT , by possibly introducing some non-branching internal
nodes. Due to this observation, we can compute LZDT in O(N) time and space in an offline
manner for integer alphabets, using the offline algorithm of [2] which computes the LZ78
factorization of T from the suffix tree of T . In what follows, we show how to compute LZDT

in O(N log σ) time using O(N) space in an online manner.
The basic strategy of our online algorithm is as follows. We first build the suffix tree of T

incrementally, using Ukkonen’s online suffix tree construction algorithm [14]. Then, for each
1 ≤ i ≤ m, we find fi1 and fi2 on the suffix tree, and then mark the node which represents
fi (if there is no such node in the tree, then we create a new node and mark it).

We modify Ukkonen’s algorithm as follows. As soon as we find the first occurrence of
each character c at some position r in the string, we create a marked non-branching node v
representing c, i.e., str(v) = c. A new leaf for the suffix starting at position r is then created
as a child of v. This permits us to superimpose the children of the root of the LZD tree onto
the suffix tree.

We construct the suffix tree of T [1..j] online, for increasing j = 1, . . . , N . For each
position 1 ≤ j ≤ N , Ukkonen’s algorithm maintains the following invariant: the longest suffix
T [sj ..j] of T [1..j] that has an occurrence in T [1..j − 1]. For convenience, when the longest
suffix is the empty string ε, then let sj = j + 1. Also, let s0 = 0. We will use this suffix (and
its location in the suffix tree) to determine the first and second elements of each LZD factor.

Assume that we have constructed the suffix tree for T [1..j] for some 1 ≤ j < N such
that sj−1 < sj . Also, assume that we have computed f1, . . . , fi−1 for the minimum integer i

1 The bound M = O(N) can be achieved with string aN−1$ with N − 1 = 2k for some k. Observe that
f1 = aa, f2 = f1f1 = aaaa, . . ., fm−1 = a

N−1
2 , and fm = $.
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T
ksj-1 sj j-1 j

fi-1f
1

Figure 2 T [sj−1..j − 1] (resp. T [sj ..j]) is the longest suffix of T [1..j − 1] (resp. T [1..j]) that has
an occurrence in T [1..j − 2] (resp. T [1..j − 1]). We have computed f1, . . . , fi−1 for the minimum i

satisfying sj−1 ≤ |f1 · · · fi−1|+ 1 < sj .

T
sj’

fi-1f
1

fi’1
j’j’-1-1 sj’

Figure 3 When computing fi′1
, if |f1 . . . fi′−1|+ depth(z) > j, then we update the suffix tree of

T [1..j] to that of T [1..j′] with the minimum j′ > j such that sj = sj′−1 ≤ |f1 . . . fi′−1|+ 1 < sj′ .
Then, fi′1

is represented by the lowest marked node in the path P|f1...fi′−1|+1.

satisfying sj−1 ≤ |f1 · · · fi−1|+ 1 < sj (see also Fig. 2). For any sj−1 ≤ k < sj , let Pk be the
path spelling out T [k..j − 1] from the root. While we update the suffix tree of T [1..j − 1]
to that of T [1..j] by Ukkonen’s algorithm, the ending position of path Pk in the tree can
be found in amortized constant time for each k, in increasing order. Let fi, . . . , fi′ be the
consecutive LZD factors such that i′ is the minimum integer with |f1 · · · fi′ |+ 1 ≥ sj . Since
a node of the suffix tree is marked iff it represents one of the previous LZD factors or a single
character, for any k (sj−1 ≤ k < sj) the lowest marked node vk in the path Pk represents
the longest prefix T [k..k + depth(vk)− 1] of T [k..N ] which is also a previous LZD factor
or a single character. This allows us to efficiently compute f` for each ` = i, . . . , i′ − 1 in
increasing order. As soon as we finish computing each f`, we maintain the suffix tree so
that it contains a marked node which represents f`. Since we already know the location
of the node which represents f`1 , we can find the ending position of the path spelling out
f` = f`1f`2 simply by traversing f`2 from the node representing f`1 . If f` is represented by
an explicit node in the current tree, we mark the node. Otherwise, we insert a new marked
node representing f` into the tree. Since

∑i′−1
`=i |f`2 | < |fi · · · fi′−1|, this takes a total of

O(|fi · · · fi′−1| log σ) time for all i ≤ ` < i′.
In the sequel, we show how to compute the first element fi′1 of fi′ . If sj = j + 1 (i.e.,

j is the first occurrence of character T [j] in T [1..j]), then fi′1 = T [j]. After computing
this, we mark the node representing T [j]. Otherwise, let z be the lowest marked node in
the path from the root which spells out T [|f1 . . . fi′−1|+ 1..j]. By definition, it holds that
|f1 . . . fi′−1| + depth(z) ≤ j. If |f1 . . . fi′−1| + depth(z) < j, then fi′1 is computed in the
same way as above, namely fi′1 = str(z). If |f1 . . . fi′−1|+ depth(z) = j, then we update
the suffix tree of T [1..j] to that of T [1..j′], where j′ > j is the minimum integer such that
sj = sj′−1 ≤ |f1 . . . fi′−1|+ 1 < sj′ . Then, we can compute fi′1 in the same way as above,
on the suffix tree for T [1..j′]. The second element fi′2 can be computed analogously, and
the node representing fi′ can be found and marked in O(|fi′ | log σ) time. We repeat this
procedure till we obtain all LZD factors for T .

What remains is how to efficiently compute the lowest marked node in each path Pk. We
use the following result:

I Lemma 5 ([15, 1]). A semi-dynamic rooted tree can be maintained in linear space in its
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size so that the following operations are supported in amortized O(1) time: 1) find the nearest
marked ancestor of any node; 2) insert an unmarked node; 3) mark an unmarked node.

By semi-dynamic we mean that insertions of new nodes to the tree are allowed, while deletions
of existing nodes from the tree are not allowed. Since Ukkonen’s algorithm does not delete
any existing nodes, we can use the above lemma in our algorithm. If path Pk ends on an edge
(i.e., if T [k..j − 1] is represented by an implicit node), then we can use the lowest explicit
node in the path Pk to find the desired nearest marked ancestor.

After computing all LZD factors, we can discard the suffix tree. Ukkonen’s algorithm
constructs the suffix tree STT of string T in O(N log σ) time and O(N) space. Since we can
find all LZD factors in O(

∑m
i=1 |fi| log σ) = O(N log σ) time and O(N) space, we obtain the

following theorem:

I Theorem 6 (Fast online LZD factorization). Given a string T of length N , we can compute
LZDT = f1, . . . , fm in O(N log σ) time and O(N) space in an online manner, where σ is
the alphabet size.

4 LZD Factorization with Variable-to-Fixed Encoding

This section proposes an extension of LZD factorization of Section 3 to a variable-to-fixed
encoding that runs in O(N +min(m, 2L)(M +min(m,M, 2L) log σ)) time and O(min(2L,m))
space, where L is the fixed bit-length of code words representing factors, m is the number
of factors, and M is the length of the longest factor. We call this variant the LZDVF
factorization.

Since we are allowed to use only 2L codes to represent the factors, we can store at most
2L previous factors to compute new factors. A naïve solution would be to compute and store
the first 2L factors for the prefix T [1..|f1 . . . f2L |], and then factorize the remaining suffix
T [|f1 . . . f2L |+ 1..N ] using the existing dictionary, without introducing new factors to it. We
store these factors in a Patricia tree, and hence this algorithm uses O(min(2L,m)) space.
Since there are at most min(m,M, 2L)− 1 branching nodes in the trie, this algorithm runs
in O(N + min(m, 2L)(M + min(m,M, 2L) log σ)) time. However, when the content of the
remainder T [|f1 . . . f2L |+1..N ] is significantly different from that of the prefix T [1..|f1 . . . f2L |],
then the naïve algorithm would decompose the remainder into many short factors, resulting
in a poor compression ratio.

To overcome the above difficulties, our algorithms reuse limited encoding space by deleting
some factors, and store new factors there. We propose two kinds of replacement strategies
which we call LZDVF Count and LZDVF Pre respectively. The first one counts the number
of factors appearing in the derivation trees of the factors that are currently stored in the
dictionary, and deletes factors with low frequencies. This method is similar to the ones used
in [12, 8]. The second one deletes the least recently used factor in the dictionary in a similar
way to [11] which uses an LRU strategy for LZ78 factorization.

In both strategies, there are at most 2L entries in the dictionary and thus each factor is
encoded by an L-bit integer. Since code words are reused as new factors are inserted and
old factors are deleted from the dictionary, one may think that this introduces difficulties in
decompression. However, since the procedure is deterministic, the change in assignment can
be recreated during decompression, and thus will not cause problems.
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4.1 Counter-based Strategy
We define the derivation tree of each factor fi = fi1fi2 recursively, as follows. The root of the
tree is labeled with fi, with two children such that the subtree rooted at the left child is the
derivation tree of fi1 , and the subtree rooted at the right child is the derivation tree of fi2 .
If fi1 is a single character a, then its derivation tree consists only of the root labeled with a.
The same applies to fi2 . Let vOcci(fj) denote the number of nodes in the derivation tree of
fi which are labeled with fj . For all factors fj that appear at least once in the derivation
tree of fi, we can compute vOcci(fj) in a total of O(|fi|) time by simply traversing the
derivation tree. Let count(fj) be the sum of vOccq(fj) for all factors fq that are currently
stored in the dictionary.

Assume that we have just computed a new factor fi = fi1fi2 . For each factor fj with
vOcci(fj) > 0, we first add vOcci(fj) to count(fj). If 2L factors are already stored, then
we do the following to delete factors from the dictionary. Depending on whether fi1 and
fi2 are single characters or not, at least one (just fi), and at most 3 (fi and both fi1 , fi2)
new factors are introduced. For all factors fh that are currently stored in the dictionary, we
decrease count(fh) one by one, until for some factor fk, count(fk) = 0. We delete all such
factors and repeat the procedure until enough factors have been deleted.

As the number of nodes in the derivation tree of each factor fj is O(|fj |), the sum of
counter values for all factors is O(N). Hence, the total time required to increase and decrease
the counter values is O(N). Thus, the counter-based algorithm takes O(N + min(m, 2L)(M +
min(m,M, 2L) log σ)) time and O(min(2L,m)) space. When L can be seen as a constant,
the algorithm runs in O(N +M + log σ) = O(N) time and uses O(1) space.

4.2 Prefix-based Strategy
Assume that we have computed the first i factors f1, . . . , fi. In the prefix-based strategy, we
consider a factor to be used at step i if it is a prefix of fi. If fh1(= fi), fh2 , . . . , fhk

are the
sequence of all k factors in the dictionary which are prefixes of fi in decreasing order of their
lengths, then we consider that these factors are used in this chronological order. Hence, fhk

will be the most recently used factor for step i. We use a doubly-linked list to maintain the
factors, with the most recently used factor at the front and the least recently used factor at
the back of the list. At each step i, we update the information for the factors fh1 , . . . , fhk

.
For any 1 ≤ j ≤ k, if fhj

is already in the list, we simply move it to the front of the list.
Since the list is doubly linked, this can be done in O(1) time. Otherwise, we simply insert a
new element for fhj

to the front of the list, and delete the LRU factor at the back of the list
if the size of the list exceeded 2L. This can also be done in O(1) time.

The factors fh1 , . . . , fhk
can easily be found by maintaining the existing factors in a trie.

Note that in each step of the algorithm, the LRU factor to be deleted is always a leaf of the
trie since we have inserted the most recently used factors in decreasing order of their lengths.
Hence, it takes O(1) time to remove the LRU factor from the trie. Overall, the prefix-based
algorithm also takes O(N + min(m, 2L)(M + min(m,M, 2L) log σ)) time and O(min(2L,m))
space, which are respectively O(N) and O(1) when L is a constant.

5 Computational Experiments

All computations were conducted on a Mac Xserve (Early 2009) (Mac OS X 10.6.8) with
2 x 2.93GHz Quad Core Xeon processors and 24GB Memory, but only running a single
process/thread at once. Each core has L2 cache of 256 KB and L3 cache of 8MB. The
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programs were compiled using LLVM C++ compiler (clang++) 3.4.2 with the -Ofast option
for optimization.

We implemented the space efficient on-line LZD algorithm described in Section 3.1, and
the algorithms LZDVF Count and Pre with variable-to-fixed encoding described in Section 4
2, and compared them with the state-of-the art of grammar compression algorithms OLCA [7]
and FOLCA [9]. For LZD, the resulting grammar is first transformed to a Straight line
program (SLP) by transforming the first rule S → f1 · · · fm; replacing consecutive factors
with non-terminal variables iteratively until the number of non-terminal variables equals to
1, and then the SLP is encoded in the same way as [7]. The output of LZDVF is a sequence
of pairs of fixed-length code words that describes each LZD factor.

We evaluated the compression ratio, compression and decompression speed3 of each
algorithm for data (non highly-repetitive4 and highly-repetitive5) taken from the Pizza &
Chili Corpus. The running times are measured in seconds, and includes the time reading
from and writing to the disk. The disk and memory caches are purged before every run
using the purge command. The average of three runs is reported. The results are shown
in Fig. 4 (a)-(d). We can see that compared to LZ78, LZD improves the compression ratio
for all cases, as well as compression/decompression times in almost all most cases. The
compression ratio of LZD is roughly comparable to OLCA, but the compression time of LZD
slightly outperforms that of OLCA for highly repetitive texts, though not for the non-highly
repetitive texts.

We also evaluated the performance of our algorithms for large-scale highly repetitive
data, using 10GB of English Wikipedia edit history data6 (See Fig. 4 (e) and (f)). In this
experiment, we modified LZDVF Pre and Count so that they do not read the whole input
text into memory, and to explicitly store the edge labels of the Patricia tree that represents
the factors. This modification increases the required working space from O(min(2L,m)) to
O(min(2L,m)M), but allows us to process large-scale data which does not fit in main memory.
We compared the modified version of LZDVF Pre and Count with Freq and Lossy FOLCA [8],
and ADS [12] which use constant space. In this experiment, LZDVF Pre with bit-size of
16 shows the best performance. Surprisingly, it reduces the compression time to about a
seventh of that of FOLCA Freq, which is the fastest of the previous grammar compression
algorithms applicable to such large-scale data, while achieving a better compression ratio.
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Figure 4 Compression and decompression speed wrt. compression ratios. Results for LZD,
LZDVF Pre and Count (VFPre and VFCount), OLCA [7] and FOLCA [9] on: (a), (b) non highly
repetitive texts (DNA, English, Proteins, Sources, XML) of size 200MB and (c), (d) highly repetitive
texts (einstein.en, Escherichia_Coli, influenza, kernel, para, world_leaders). (e), (f): Results for
LZDVF Pre and Count (VFPre and VFCount), Freq and Lossy FOLCA [8] (FOFreq and FOLossy),
and ADS [12], which are grammar compression algorithms that do not store the whole input text in
RAM, on 10GB of English Wikipedia edit history. The parameters that determine the maximum
number of non-terminal variables that VFPre, VFCount, FOFreq, ADS can store are varied between
212, 214, 216 respectively. The block size parameter is varied 100MB and 500MB for ADS, and
100MB, 500MB, 1000MB for FOLossy. Note that the points out of the frame are not plotted for
visibility.
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