
Space Efficient Linear Time
Lempel-Ziv Factorization for

Small Alphabet

Kyushu University
Keisuke Goto, Hideo Bannai

1

/ 46

LZ77 Factorization

f1 f2 fj-1・・・・
i

T[i] does not occur before

fj

T
Case 1

2

✦ For a string T of length N, the LZ77 factorization of T is a
factorization T = f1 f2 ... fz such that each factor satisfies the
following conditions

✦ For a factor fj, let i = | f1f2..fj-1| + 1,
1) if T[i] does not occur before position i, fj = T[i]
2) otherwise, fj is the longest substring that occurs at i and

somewhere before i

/ 46

f1 f2 fj-1・・・・
i

T
Case 2 fj

substrings occur at i
the longest substring

3

LZ77 Factorization
✦ For a string T of length N, the LZ77 factorization of T is a

factorization T = f1 f2 ... fz such that each factor satisfies the
following conditions

✦ For a factor fj, let i = | f1f2..fj-1| + 1,
1) if T[i] does not occur before position i, fj = T[i]
2) otherwise, fj is the longest substring that occurs at i and

somewhere before i

/ 46

abaabababaaaaabbababT =
f1 f2 f3 f4 f5 f6 f7 f8

Example

4

LZ77 Factorization
✦ For a string T of length N, the LZ77 factorization of T is a

factorization T = f1 f2 ... fz such that each factor satisfies following
conditions

✦ For a factor fj, let i = | f1f2..fj-1| + 1,
1) if T[i] does not occur before, fj = T[i]
2) otherwise, fj is the longest substring that occurs at i and

somewhere before i

/ 46

abaabababaaaaabbababT =
f1 f2 f3 f4 f5 f6 f7 f8

5

LZ77 Factorization

Example

✦ For a string T of length N, the LZ77 factorization of T is a
factorization T = f1 f2 ... fz such that each factor satisfies following
conditions

✦ For a factor fj, let i = | f1f2..fj-1| + 1,
1) if T[i] does not occur before, fj = T[i]
2) otherwise, fj is the longest substring that occurs at i and

somewhere before i

/ 46

abaabababaaaaabbababT =
f1 f2 f3 f4 f5 f6 f7 f8

6

LZ77 Factorization

Example

✦ For a string T of length N, the LZ77 factorization of T is a
factorization T = f1 f2 ... fz such that each factor satisfies following
conditions

✦ For a factor fj, let i = | f1f2..fj-1| + 1,
1) if T[i] does not occur before, fj = T[i]
2) otherwise, fj is the longest substring that occurs at i and

somewhere before i

/ 46

abaabababaaaaabbababT =
f1 f2 f3 f4 f5 f6 f7 f8

7

LZ77 Factorization

Example

✦ For a string T of length N, the LZ77 factorization of T is a
factorization T = f1 f2 ... fz such that each factor satisfies following
conditions

✦ For a factor fj, let i = | f1f2..fj-1| + 1,
1) if T[i] does not occur before, fj = T[i]
2) otherwise, fj is the longest substring that occurs at i and

somewhere before i

/ 46

abaabababaaaaabbababT =
f1 f2 f3 f4 f5 f6 f7 f8

8

LZ77 Factorization

Example

✦ For a string T of length N, the LZ77 factorization of T is a
factorization T = f1 f2 ... fz such that each factor satisfies following
conditions

✦ For a factor fj, let i = | f1f2..fj-1| + 1,
1) if T[i] does not occur before, fj = T[i]
2) otherwise, fj is the longest substring that occurs at i and

somewhere before i

/ 46

abaabababaaaaabbababT =
f1 f2 f3 f4 f5 f6 f7 f8

9

LZ77 Factorization

Example

✦ For a string T of length N, the LZ77 factorization of T is a
factorization T = f1 f2 ... fz such that each factor satisfies following
conditions

✦ For a factor fj, let i = | f1f2..fj-1| + 1,
1) if T[i] does not occur before, fj = T[i]
2) otherwise, fj is the longest substring that occurs at i and

somewhere before i

/ 46

abaabababaaaaabbababT =

PrevOcc(16) = 5 LPF(16) = 5 (5, 5)
=

Each factor fj starting at i can be represented as  
a single character (case 1), or a pair (PrevOcc(i), LPF(i))(case 2)

f1 f2 f3 f4 f5 f6 f7 f8

i = 16

10

LZ77 Factorization
✦ For a string T of length N, the LZ77 factorization of T is a

factorization T = f1 f2 ... fz such that each factor satisfies following
conditions

✦ For a factor fj, let i = | f1f2..fj-1| + 1,
1) if T[i] does not occur before, fj = T[i]
2) otherwise, fj is the longest substring that occurs at i and

somewhere before i

/ 46

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PrevOcc - - 1 1 2 4 5 1 2 3 10 11 3 8 9 5 6 7 8 9
LPF - - 1 3 2 5 4 4 3 2 4 3 3 2 1 5 4 3 2 1

T a b a a b a b a b a a a a a b b a b a b

f1 f2 f3 f4 f5 f6 f7 f8

Algorithm by using PrevOcc, LPF Arrays

✦ Consider the arrays that store PrevOcc(i) and LPF(i) for all postions i
① For a factor fj starting at i, output PrevOcc(i) and LPF(i)

② Update i = i + LPF(i), and repeat ① when i < N

PrevOcc(16) = 5 LPF(16) = 5 (5, 5)

=

11

/ 46

Previous Works Before 2013

Space required Integer Arrays

Algorithm Stack
of

Integer
Arrays of
length N

LCP LPF Prev
Occ SA PSV NSV SA-1

Crochemore & Ilie, 2008 5 ✔ ✔ ✔ ✔ ✔
✔ 4 ✔ ✔ ✔ ✔

Chen+, 2008
✔ 4 ✔ ✔ ✔ ✔
✔ 3 ✔ ✔ ✔
✔ 2 ✔ ✔

Crochemore+, 2008 ✔ 4 ✔ ✔ ✔ ✔

Crochemore+, 2009 ✔ 4 ✔ ✔ ✔ ✔

Ohlenbusch & Gog, 2011 3 ✔ ✔ ✔

✦ Most previous works focus on how to efficiently compute the LPF
and PrevOcc arrays

12

/ 46

Space required Integer Arrays

Algorithm Name Stack
of Integer
Arrays of
length N

LPF Prev
Occ SA PSV NSV Φ SA-1

Ohlenbusch & Gog,2011 OG 3 ✔ ✔ ✔

Goto & Bannai, 2013 BG4 ✔ 4 ✔ ✔ ✔ ✔
BG3 3 ✔ ✔ ✔

Kärkkäinen+, 2013 KKP3 3 ✔ ✔ ✔
KKP2 2 ✔ ✔

Goto & Bannai, 2014 BG2 2 ✔ ✔
BG1 1* ✔

✦ In 2013, algorithms not based on LPF and PrevOcc were proposed.
✦ Karkkainen+ reduced integer arrays of length N from three to two. 

13

Previous Works in 2013

/ 46

Our Contribution

We propose a linear time algorithm that uses a single integer array of
length N in addition to O(σ log N) bits, where σ is alphabet size

* require additional space of O(σ log N) bits 14

Space required Integer Arrays

Algorithm Name Stack
of Integer
Arrays of
length N

LPF Prev
Occ SA PSV NSV Φ SA-1

Ohlenbusch & Gog,2011 OG 3 ✔ ✔ ✔

Goto & Bannai, 2013 BG4 ✔ 4 ✔ ✔ ✔ ✔
BG3 3 ✔ ✔ ✔

Kärkkäinen+, 2013 KKP3 3 ✔ ✔ ✔
KKP2 2 ✔ ✔

Goto & Bannai, 2014 BG2 2 ✔ ✔
BG1 1* ✔

/ 46

KKP3 / BG3

18

/ 46

Naive Algorithm

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T a b a a b a b a b a a a a a b b a b a b

f1 f2 f3

: match

: not match

19

✦ compute LPF(i), PrevOcc(i) by naive character comparison between
T[i..N] and T[k..N] for all k < i

✦ i = i+LPF(i) and repeat

/ 46

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T a b a a b a b a b a a a a a b b a b a b

f1 f2 f3 f4

20

Naive Algorithm

✦ compute LPF(i), PrevOcc(i) by naive character comparison between
T[i..N] and T[k..N] for all k < i

✦ i = i+LPF(i) and repeat

: match

: not match

/ 46

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T a b a a b a b a b a a a a a b b a b a b

f1 f2 f3 f4 f5

21

Naive Algorithm

✦ compute LPF(i), PrevOcc(i) by naive character comparison between
T[i..N] and T[k..N] for all k < i

✦ i = i+LPF(i) and repeat

: match

: not match

/ 46

|f1 ... f4|

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T a b a a b a b a b a a a a a b b a b a b

f1 f2 f3 f4 f5

22

Naive Algorithm

✦ compute LPF(i), PrevOcc(i) by naive character comparison between
T[i..N] and T[k..N] for all k < i

✦ i = i+LPF(i) and repeat

: match

For a factor fj , naive algorithm needs at most |f1 ... fj-1|・| fj | comparisons
Total # of comparison is Σ |f1 ... fj-1|・|fj| ≦ N Σ |fj| = O(N2)

If we can reduce this to constant
the algorithm runs in O(N) time

: not match

/ 46

Idea of KKP3 / BG3
Lemma [Crochemore and Ilie, 2008]

i SA[i] T[SA[i] ..N]

15 2 baabababaaaaabbabab
16 18 bab
17 7 babaaaaabbabab
18 16 babab
19 5 bababaaaaabbabab
20 15 bbabab

・
・
・

・
・
・

・
・
・

occur before 7

The candidates of PrevOcc(i) can be reduced to 2 positions;
the lexicographic predecessor and successor of suffix i 
in suffixes that start at previous positions

23

/ 46

i SA[i] T[SA[i] ..N]

15 2 baabababaaaaabbabab
16 18 bab
17 7 babaaaaabbabab
18 16 babab
19 5 bababaaaaabbabab
20 15 bbabab

・
・
・

・
・
・

・
・
・

`

NSV(7)

PSV(7)

24

Lemma [Crochemore and Ilie, 2008]

PrevOcc(SA[i]) = PSV(SA[i]) OR NSV(SA[i])

NSV(SA[i]) = min{SA[j] | j > i, SA[j] < SA[i]}
PSV(SA[i]) = max{SA[j] | j < i, SA[j] < SA[i]}

occur before 7

Idea of KKP3 / BG3

/ 46

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T a b a a b a b a b a a a a a b b a b a b

f1 f2 f3 f4

25

Lemma [Crochemore and Ilie, 2008]

PrevOcc(SA[i]) = PSV(SA[i]) OR NSV(SA[i])

NSV(SA[i]) = min{SA[j] | j > i, SA[j] < SA[i]}
PSV(SA[i]) = max{SA[j] | j < i, SA[j] < SA[i]}

For a factor fj, the number of comparison is 2 |fj|
Total # of comparison is Σ 2 |fj| = O(N)

Idea of KKP3 / BG3

/ 46

Linear Time Computation of PSV and NSV Arrays

All PSV and NSV values can be obtained in linear time 
 by sequentially scanning SA from left to right OR right to left

12 7 15 4 9 11 2 8 13 1 14 6 3 10 16 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PSV
NSV

SA

Lemma [Crochemore and Ilie, 2008]

26

lexicographic rank

text positions

/ 46

Overview of KKP3

KKP3 run in linear time and 3N log N bits space

SA

NSV

NSV PSV

PSV

27

Array 1 Array 2 Array 3

unused

preliminary step

factorization step

/ 46

KKP2

28

/ 46

Φ Array

i Φ[i] SA[i] T[SA[i]]
1 4 3 aaacatat
2 7 4 aacatat
3 0 1 acaaacatat
4 3 5 acatat
5 1 9 at
6 2 7 atat
7 9 2 caaacatat
8 10 6 catat
9 5 10 t
10 6 8 tat

T = acaaacatat

Φ array is an array that stores each lexicographic predecessor of 
each suffix in text order.
Φ[SA[i]] = SA[i-1] (i > 1), Φ[SA[1]] = N

[Kärkkäinen+, 2009]

NOTE: all SA[i] can be obtained from right to left by Φ

29

/ 46

Lemma [Kärkkäinen+, 2013]

NSV
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

initial state

Φ NSV

PSV(i) can be obtained by NSV(i) and Φ[1..i-1]

step i

i

Φ array can be constructed in linear time and in-place from
NSV(PSV) array by sequentially scanning from left to right

Φ final state

NOTE: for each step i, PSV(i), NSV(i) can be obtained

30

/ 46

Overview of KKP2

SA

NSV

NSV

Φ

PSV(i), NSV(i)

KKP2 runs in linear time and 2N log N bits space

Array 1 Array 2 Array 3

31

unused

unused

preliminary step

/ 46

BG2

32

/ 46

Idea of BG2

SA

NSVPSV

If we can rewrite SA to PSV array, LZ77 factorization can be
computed by two integer arrays

33

preliminary step

factorization step

Array 1 Array 2 Array 3

unused

unusedNSVPSV

/ 46

It can be accomplished through Φ array

34

Idea of BG2

SA

NSVPSV

NSVPSV

preliminary step

factorization step

Array 1 Array 2 Array 3

unused

unused

Φ

/ 46

9 11 2 8 13 1 14 6 3 10 16 5 12 7 15 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NSV
PSV

SA

✦ By scanning SA[i] from left to right, PSV(SA[i]), NSV(SA[i])
can be obtained

✦ SA[i] never be read after read once

Observation

Is it possible to store NSV[SA[i]] to SA[i] ?

35

It seems IMPOSSIBLE because they have a different ordering

/ 46

9 11 2 8 13 1 14 6 3 10 16 5 12 7 15 4

15 12 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Φ
PSV

SA

PSV and NSV arrays can be computed by Φ

36

Observation

✦ All SA[i] can be obtained from right to left by Φ
✦ Φ[SA[i]] never be used after read once

/ 46

9 11 2 8 13 1 14 6 3 10 16 5 12 7 15 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SA

Since PSV, NSV, and Φ array are text ordering,
NSV[SA[i]] can be stored in Φ[SA[i]]

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Φ

PSV

rewrite to NSV[SA[i]]

Lemma

NSV array can be rewrited from Φ array in linear time and in-place

/ 46

Overview of BG2

SA

Φ

NSVPSV

NSVPSV

BG2 runs in linear time and 2N log N bits space

38

preliminary step

factorization step

Array 1 Array 2 Array 3

unused

unused

/ 46

BG1

39

/ 46

Φ

NSV

SA

PSV

✦ If given Φ not SA, LZ77 factorization can be computed in N log N
bits space by using ideas of BG2 and KKP2

Idea of BG1

40

preliminary step

factorization step

NSV

Φ

PSV(i), NSV(i)

unused

unused

/ 46

In-place computation of Φ array

✦ Idea: simulating Nong’s suffix array construction algorithm on Φ
array

Theorem [Nong, 2013]

Lemma

For a string T of length N, the Φ array of T can be computed in
linear time and O(σ log N) bits additional space

41

For a string T of length N, the SA of T can be computed in linear
time and O(σ log N) bits additional space

/ 46

Overview of BG1

NSV

Φ

Φ

NSV

BG1 runs in linear time and N log N + O(σ log N) bits space

42

preliminary step

factorization step
PSV(i), NSV(i)

/ 46

Computational Experiments
✦ Nevertheless BG1 uses a third space than KKP3, 

the runtime of BG1 does not over 2.5 times than that of KKP3
✦ Nevertheless BG1 uses a half space than KKP2, 

the runtime of BG1 does not over 2 times than that of KKP2

R
un

tim
e

(s
ec

)

0.00

100.00

200.00

300.00

400.00

dblp dna proteins english sources kernel coreutils cere einstein

KKP3 KKP2 BG2 BG1
100 100 100 100 100 258 205 461 467

File Name
Data Size(MB)

43corpus: http://www.cas.mcmaster.ca/~bill/strings

http://www.cas.mcmaster.ca/~bill/strings

/ 46

 0

 20

 40

 60

 80

 100

KKP3 KKP2 BG2 BG1 LZScan LZISA6s

Ti
m

e
(s

ec
on

ds
)

LZ parsing
PSV and NSV

SA

DNA 100MB σ = 16

BG2KKP2KKP3 BG1 LZISA6sLZScan

44

/ 46

Summary

We proposed a space efficient linear time LZ77 factorization algorithm
for small alphabets, which uses N log N bits + O(σ log N) bits of space

Future Perspective

•Can we reduce the space O(σ log N) bits of BG1?
•It seems difficult since we have to compute Φ array truly in-place.

•We should perhaps shift our focus to practically fast non-linear time
algorithms which use less space than BG1.

45

