Speeding up *q*-gram mining on grammar based compressed text Kyushu University OKeisuke Goto, Hideo Bannai, Shunsuke Inenaga, Masayuki Takeda * Data compression allows large scale string data to be stored compactly * In order to process such data, we usually decompress them, which requires a lot of space and time. * In order to process such data, we usually decompress them, which requires a lot of space and time. * In order to process such data, we usually decompress them, which requires a lot of space and time. * One solution is to process compressed strings without explicit decompression. * One solution is to process compressed strings without explicit decompression. ## Grammar-Based Compressed String Processing | Problem | Previous Work | | |--|---|--| | Equality Test | [Plandowski '94]; Lifshits '07];
[Schmidt-Schauss+ '09]; | | | Pattern Match | [Karpinski+ '97], [Miyazaki+ '97], [Inenaga+ '04], [Lifshits '06], [Gawrychowski '11] | | | Approximate Pattern Match | [Matsumoto+'00]; [Navarro+'01] | | | Subsequence Match | [Cegielski+ '00]; [Tiskin '09]; [Yamamoto+ '11] | | | Longest Common Subsequence / Edit Distance | [Tiskin '07, '08]; [Hermelin + '09, '11] | | | Pattern Discovery | [Inenaga+ '09]; [Matsubara+ '09] | | | q-gram Frequencies | [Goto+ '11]; [Goto+ '12] | | ## Grammar-Based Compressed String Processing | Problem | Previous Work | | |--|---|--| | Equality Test | [Plandowski '94]; Lifshits '07];
[Schmidt-Schauss+ '09]; | | | Pattern Match | [Karpinski+ '97], [Miyazaki+ '97], [Inenaga+ '04], [Lifshits '06], [Gawrychowski '11] | | | Approximate Pattern Match | [Matsumoto+'00]; [Navarro+'01] | | | Subsequence Match | [Cegielski+ '00]; [Tiskin '09]; [Yamamoto+ '11] | | | Longest Common Subsequence / Edit Distance | [Tiskin '07, '08]; [Hermelin + '09, '11] | | | Pattern Discovery | [Inenaga+ '09]; [Matsubara+ '09] | | | q-gram Frequencies | [Goto+'11]; [Goto+'12] | | #### Main contribution | | Uncompressed | SLP | SLP | |-------------|----------------------------------|----------------------|---| | | String | (SPIRE 2011) | (This work) | | q-gram Freq | $O(T) = O(2^n)$ time and space | O(qn) time and space | $O(\min\{qn, T - dup(q, D)\})$ time and space | T: uncompressed string, n: the size of SLP dup(q, D): a quantity that represents the amount of redundancy that the SLP D captures with respect to q-grams The algorithm is asymptotically always at least as fast and better in many cases compared to working on the uncompressed string #### **Definition** Input: string T, positive integer q Output: $\{(P, Freq(T, P)) | P \in \Sigma^q, Freq(T, P) > 0\}$ where Freq(T, P) is # occurrences of P in T #### **Definition** Input: string T, positive integer q Output: $\{(P, Freq(T, P)) | P \in \Sigma^q, Freq(T, P) > 0\}$ where Freq(T, P) is # occurrences of P in T Example q = 3 T = abaababaab #### **Definition** ``` Input: string T, positive integer q Output: \{(P, Freq(T, P)) \mid P \in \Sigma^q, Freq(T, P) > 0\} where Freq(T, P) is # occurrences of P in T ``` #### **Definition** ``` Input: string T, positive integer q Output: \{(P, Freq(T, P)) \mid P \in \Sigma^q, Freq(T, P) > 0\} where Freq(T, P) is # occurrences of P in T ``` ``` Example q=3 T= abaababaab \qquad Freq(T, "aba")=3 aba baa aba bab aba baa baa aba ``` #### **Definition** ``` Input: string T, positive integer q Output: \{(P, Freq(T, P)) \mid P \in \Sigma^q, Freq(T, P) > 0\} ``` where Freq(T, P) is # occurrences of P in T Example $$q = 3$$ $$T = \text{abaababaab} \qquad Freq(T, \text{``aba''}) = 3$$ $$\text{baa} \qquad Freq(T, \text{``baa''}) = 2$$ $$\text{aba} \qquad \text{aba} \qquad \text{bab} \qquad \text{aba} \qquad \text{bab} \qquad \text{aba}$$ #### **Definition** ``` Input: string T, positive integer q ``` Output : $$\{(P, Freq(T, P)) | P \in \Sigma^q, Freq(T, P) > 0\}$$ where Freq(T, P) is # occurrences of P in T ``` Example q = 3 T = \text{abaababaab} \text{aba} \text{baa} \text{aab} \text{aba} \text{bab} \text{aba} \text{bab} \text{aba} \text{bab} \text{aba} \text{bab} \text{aba} \text{bab} \text{aba} ``` #### **Definition** ``` Input: string T, positive integer q ``` Output : $$\{(P, Freq(T, P)) | P \in \Sigma^q, Freq(T, P) > 0\}$$ where Freq(T, P) is # occurrences of P in T Example $$q = 3$$ $$T = \text{abaababaab}$$ $$\text{aba}$$ $$\text{baa}$$ $$\text{aab}$$ $$\text{aba}$$ $$\text{bab}$$ $$\text{aba}$$ $$\text{bab}$$ $$\text{aba}$$ $$\text{freq}(T, \text{"aba"}) = 2$$ $$\text{Freq}(T, \text{"aab"}) = 2$$ $$\text{Freq}(T, \text{"bab"}) = 1$$ baa aab ## Straight Line Program (SLP) #### **Definition** Straight Line Program is a context free grammar in the Chomsky normal form that derives a single string. $$X_1 = expr_1, X_2 = expr_2, ..., X_n = expr_n$$ $expr_i \in \Sigma$ or $expr_i = X_l \cdot X_r (l, r < i)$ SLP can represent the output of well-known compression algorithms + e.g. RE-PAIR, SEQUITUR, LZ78, LZW, LZ77, LZSS ## Example of SLP SLP: D $$X_1 = a$$ $$X_2 = b$$ $$X_3 = X_1 X_2$$ $$X_4 = X_1 X_3$$ $$X_5 = X_3 X_4$$ $$X_6 = X_4 X_5$$ $$X_7 = X_6 X_5$$ $$n = |D| = 7$$ ## Example of SLP SLP: D $$X_1 = a$$ $$X_2 = b$$ $$X_3 = X_1 X_2$$ $$X_4 = X_1 X_3$$ $$X_5 = X_3 X_4$$ $$X_6 = X_4 X_5$$ $$X_7 = X_6 X_5$$ $$n = |D| = 7$$ Length of the decompressed string can be $\Theta(2^n)$ ## Example of SLP SLP: D $$X_1 = a$$ $$X_2 = b$$ $$X_3 = X_1 X_2$$ $$X_4 = X_1 X_3$$ $$X_5 = X_3 X_4$$ $$X_6 = X_4 X_5$$ $$X_7 = X_6 X_5$$ $$n = |D| = 7$$ Length of the decompressed string can be $\Theta(2^n)$ # O(qn) algorithm for q-gram frequencies problem on SLP [Goto et al., SPIRE 2011] #### **Definition** For $X_i = X_l X_r$, X_i stabs an occurrence of $P \Leftrightarrow P$ starts in X_l and ends in X_r #### **Definition** For $X_i = X_l X_r$, X_i stabs an occurrence of $P \Leftrightarrow P$ starts in X_l and ends in X_r #### **Definition** For $X_i = X_l X_r$, X_i stabs an occurrence of $P \Leftrightarrow P$ starts in X_l and ends in X_r #### **Definition** For $X_i = X_l X_r$, X_i stabs an occurrence of $P \Leftrightarrow P$ starts in X_l and ends in X_r #### **Observation** For each occurrence of q-gram P, there exists a unique variable which stabs the occurrence of P ## Important idea: counting stabbed occurrences We can compute Freq(T, P) by counting the number of occurrences of P stabbed by X_i , and summing them up for all X_i $$Freq(T, P) = 2 \cdot 1 + 1 + 1$$ $X_5 \quad X_6 \quad X_7$ #### **Definition** - $Freq^{\ddagger}(X_i, P)$: # occurrences of P stabbed by X_i in the string derived from X_i . - $vOcc(X_i)$: # nodes labeled by X_i in the derivation tree of the last variable X_n . #### **Definition** - $Freq^{\ddagger}(X_i, P)$: # occurrences of P stabbed by X_i in the string derived from X_i . - $vOcc(X_i)$: # nodes labeled by X_i in the derivation tree of the last variable X_n . #### **Definition** - $Freq^{\ddagger}(X_i, P)$: # occurrences of P stabbed by X_i in the string derived from X_i . - $vOcc(X_i)$: # nodes labeled by X_i in the derivation tree of the last variable X_n . #### **Definition** - $Freq^{\ddagger}(X_i, P)$: # occurrences of P stabbed by X_i in the string derived from X_i . - $vOcc(X_i)$: # nodes labeled by X_i in the derivation tree of the last variable X_n . Freq[#] $$(X_i, P) = 3$$, Freq[#] $(X_j, P) = 1$ $vOcc(X_i) = 2$, $vOcc(X_j) = 1$ Frequency of $P = 3 \cdot 2 + 1 \cdot 1 = 7$ #### **Definition** For each variable X_i , - $Freq^{\ddagger}(X_i, P)$: # occurrences of P stabbed by X_i in the string derived from X_i . - $vOcc(X_i)$: # nodes labeled by X_i in the derivation tree of the last variable X_n . #### Lemma $$Freq(T,P) = \sum_{i=1}^{n} Freq^{\ddagger}(X_i,P) \cdot vOcc(X_i)$$ $$Freq^{\ddagger}(X_i, P) = 3$$, $Freq^{\ddagger}(X_j, P) = 1$ $$vOcc(X_i) = 2, \quad vOcc(X_i) = 1$$ Frequency of $$P = 3 \cdot 2 + 1 \cdot 1 = 7$$ # Computing $Freq^{\ddagger}(X_i, P)$ # Computing $Freq^{\ddagger}(X_i, P)$ ## Computing $Freq^{\#}(X_i, P)$ #### **Observation** For any $P \in \Sigma^q$, $Freq^{\ddagger}(X_i, P) = Freq(t_i, P)$ ## Computing $Freq^{\ddagger}(X_i, P)$ by $Freq(t_i, P)$ #### Lemma $$Freq(T,P) = \sum_{i=1}^{n} Freq(t_i,P) \cdot vOcc(X_i)$$ #### Computing frequencies by $Freq(t_i, P)$ and $vOcc(X_i)$ #### Computing frequencies by $Freq(t_i, P)$ and $vOcc(X_i)$ #### **Theorem** SLP q-gram Frequencies Problem can be solved in O(qn) time and space. #### **Sketch of proof:** Using the suffix array of the concatenation of all t_i 's, we can compute all q-gram frequencies in O(qn) time and space. ## Efficiency & Inefficiency of O(qn) algorithm ENGLISH data of 200MB from pizza & chili corpus ## Efficiency & Inefficiency of O(qn) algorithm •when q is small, the algorithm runs faster ENGLISH data of 200MB from pizza & chili corpus ## Efficiency & Inefficiency of O(qn) algorithm - •when q is large, the algorithm runs slower - •when q is small, the algorithm runs faster ENGLISH data of 200MB from pizza & chili corpus New Algorithm # New algorithm ## Inefficiency of O(qn) algorithm * Total length of decompressed strings t_i can be larger than |T| ## Inefficiency of O(qn) algorithm + There are overlaps between partially decompressed strings t_i ## Inefficiency of O(qn) algorithm * There are overlaps between partially decompressed strings t_i ### Identifying the redundancies + Consider all partially decompressed strings t_i in derivation tree ## Removing overlaps of neighboring t_i 's - * Eliminate length-(q-1) prefix of all t_i 's except for leftmost one - * Concatenation of remaining strings equals to T ## Removing duplicate ti's + For all partially eliminated t_i , remove all but first occurrence ### Removing duplicate t_i 's + For all partially eliminated t_i , remove all but first occurrence ## Size of neighbor tree * Edge from X_i to $X_j \Leftrightarrow t_i$ and t_j are neighboring #### Lemma The total length of edge labels in neighbor tree of G is $$(q-1) + \sum \{|t_i| - (q-1) \mid |X_i| \ge q, \ i = 1, ..., n\}$$ = $|T| - dup(q, D)$ where $$dup(q, D) = \sum \{(vOcc(X_i) - 1) \cdot (|t_i| - (q - 1)) \mid |X_i| \ge q, i = 1, ..., n\}$$ ## Summary of Improved algorithm #### Lemma The neighbor tree from SLP D can be constructed in $O(\min\{qn, |T| - dup(q, D)\})$ ## Summary of Improved algorithm #### Lemma The neighbor tree from SLP D can be constructed in $O(\min\{qn, |T| - dup(q, D)\})$ #### Lemma [Shibuya, 2003] The suffix tree for a tree can be constructed in time linear in its size ## Summary of Improved algorithm #### Lemma The neighbor tree from SLP D can be constructed in $O(\min\{qn, |T| - dup(q, D)\})$ #### Lemma [Shibuya, 2003] The suffix tree for a tree can be constructed in time linear in its size #### **Theorem** The q-gram frequencies problem on a SLP D of size n, representing string T can be solved in $O(\min\{qn, |T| - dup(q, D)\})$ time and space. ## Preliminary Experiment (ENGLISH 200MB) size of neighbor tree and $\Sigma |t_i|$ Example of ENGLISH data of 200MB from pizza & chili corpus ## Summary | | Uncompressed | SLP | SLP | |---------------------|----------------------------------|----------------------|---| | | String | (SPIRE 2011) | (This work) | | <i>q</i> -gram Freq | $O(T) = O(2^n)$ time and space | O(qn) time and space | $O(\min\{qn, T - dup(q, D)\})$ time and space | #### **Future work:** Other applications of neighbor tree (e.g. one paper accepted to SPIRE 2012) ## 想定される質問 - + Q.木を作る時, ラベルはどうやって計算するの? - * A. right q-gram neighborの種類は2つ, neighborが子孫か祖先か. 祖先に遷移してから次に祖先に遷移するまでのパスを考えると、各ノードのneighborは右辺のleft most pathの変数になる。つまりこのパスのラベルは最初の変数(一番祖先)右辺のprefixになる。仮定より、パスの各変数の左辺の長さはq-1以下、よって各変数の左辺をナイーブに展開すればパスのラベルを求めることが出来る。 ## 想定される質問 - + Q.木を作る時, ラベルはどうやって計算するの? - * A. right q-gram neighborの種類は2つ, neighborが子孫か祖先か. 祖先に遷移してから次に祖先に遷移するまでのパスを考えると、各ノードのneighborは右辺のleft most pathの変数になる。つまりこのパスのラベルは最初の変数(一番祖先)右辺のprefixになる。仮定より、パスの各変数の左辺の長さはq-1以下、よって各変数の左辺をナイーブに展開すればパスのラベルを求めることが出来る。 #### Observation: relation of t_i 's #### **Observation** For any text position u, if X_i stabs q-gram T[u...u+q-1] and X_j stabs q-gram T[u+1...u+q], then t_i and t_j share the substring $t_j[1...q-1]$. ## right q-gram neighbor #### **Definition** For any text position u, if X_i stabs q-gram T[u...u+q-1] and X_j stabs q-gram T[u+1...u+q], We say X_i is a right q-gram neighbor of X_i . ## right q-gram neighbor #### **Definition** For any text position u, if X_i stabs q-gram T[u...u+q-1] and X_j stabs q-gram T[u+1...u+q], We say X_j is a right q-gram neighbor of X_i . if X_i is an ancestor of X_j X_j is the deepest variable on the left most path of X_r , whose length is at most q if X_i is an descendant of X_j X_i is the deepest variable on the right most path of X_j , whose length is at most q ## Finding the right q-gram neighbor For all X_i , store the link from X_i to $lm_q(X_i)$, $rm_q(X_i)$ such that - $lm_q(X_i)$ is the leftmost and deepest variable of X_i s.t $|X_{l(i)}| \ge q$ - $rm_q(X_i)$ is the rightmost and deepest variable of X_i s.t $|X_{r(i)}| \ge q$ ## Finding the right q-gram neighbor For all X_i , store the link from X_i to $lm_q(X_i)$, $rm_q(X_i)$ such that - $lm_q(X_i)$ is the leftmost and deepest variable of X_i s.t $|X_{l(i)}| \ge q$ - $rm_q(X_i)$ is the rightmost and deepest variable of X_i s.t $|X_{r(i)}| \ge q$ q-gram right neighbor can be constructed in O(n) time and space # Important idea: q-gram neighbor For some u, if X_i stabs q-gram T[u...u+q-1] and X_j stabs q-gram T[u+1...u+q], we say X_j is a q-gram neighbor of X_i # Important idea: q-gram neighbor For X_i and its q-gram neighbor X_j , the length of overlap between t_i and t_j is q-1. #### Important idea: q-gram neighbor For X_i and its q-gram neighbor X_j , the length of overlap between t_i and t_j is q-1. # Constructing q-gram neighbor graph For all X_i , Store the link from X_i to $X_{l(i)}$, $X_{r(i)}$ such that - $X_{l(i)}$ is the leftmost and deepest variable of X_i s.t $|X_{l(i)}| \ge q$ - $X_{r(i)}$ is the rightmost and deepest variable of X_i s.t $|X_{r(i)}| \ge q$ # Constructing q-gram neighbor graph For all X_i , Store the link from X_i to $X_{l(i)}$, $X_{r(i)}$ such that - $X_{l(i)}$ is the leftmost and deepest variable of X_i s.t $|X_{l(i)}| \ge q$ - $X_{r(i)}$ is the rightmost and deepest variable of X_i s.t $|X_{r(i)}| \ge q$ q-gram right neighbor can be constructed in O(n) time and space # Constructing q-gram neighbor tree Doing the DFS in neighbor graph, neighbor tree can be constructed in O(n) time #### Constructing q-gram neighbor tree Doing the DFS in neighbor graph, neighbor tree can be constructed in O(n) time #### Constructing q-gram neighbor tree Doing the DFS in neighbor graph, neighbor tree can be constructed in O(n) time Label can be computed by decompressing prefix of variables Label can be computed by decompressing prefix of variables Prefix of X_7 = aab Label can be computed by decompressing prefix of variables Prefix of X_7 = aab Label can be computed by decompressing prefix of variables Prefix of X_7 = aab Prefix of X_5 = abaa Label can be computed by decompressing prefix of variables Prefix of X_7 = aab Prefix of X_5 = abaa Label can be computed by decompressing prefix of variables Prefix of X_7 = aab Prefix of X_5 = abaa Label can be computed by decompressing prefix of variables Prefix of X_7 = aab Prefix of X_5 = abaa Prefix of $X_5 = ab$ Label can be computed by decompressing prefix of variables Prefix of X_7 = aab Prefix of X_5 = abaa Prefix of $X_5 = ab$ can be decompress by its label size