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✦ One solution is to process compressed strings 
without explicit decompression. 

this work: algorithm for computing
q-gram non-overlapping frequencies
 on compressed strings

✦ In order to process such data, we usually need to decompress, 
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Occurrence and Frequency

✦ Occurrence of pattern P in text T: 
Occ(T, P)={ i |  T[i..(i+|P|-1)] = P, 0 ≦ i < |T| - |P| }

✦ Frequency of P in T: |Occ(T, P)|

T =

Occ(T, aba) = {0, 3, 5, 8, 10, 13, 15}

0 1 2 3 4 5 6 7 8 9 1011121314151617

a b a a b a b a a b a b a a b a b a

Frequency of “aba” = 7
5
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Any two occurrences k1, k2 ∈ Occ(T, P) with k1 < k2 
are said to be overlapping if  k2 < k1+|P|,
and non-overlapping otherwise.
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Any two occurrences k1, k2 ∈ Occ(T, P) with k1 < k2 
are said to be overlapping if  k2 < k1+|P|,
and non-overlapping otherwise.

T =

0 1 2 3 4 5 6 7 8 9 1011121314151617

b a b a a a a a c c a b a b a b a c

overlapping 
occurrences of “aba”

Occ(T, aba) = {1, 10, 12, 14}
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nOcc(T, P): the size of largest subset of Occ(T, P) where any 
two occrences in the set are non-overlapping

non-overlapping frequency
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nOcc(T, P): the size of largest subset of Occ(T, P) where any 
two occrences in the set are non-overlapping

non-overlapping frequency

Non-overlapping Occurrence

T =

0 1 2 3 4 5 6 7 8 9 1011121314151617

b a b a a a a a c c a b a b a b a c

nOcc(T, aba) = 3

Any two occurrences k1, k2 ∈ Occ(T, P) with k1 < k2 
are said to be overlapping if  k2 < k1+|P|,
and non-overlapping otherwise.
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Input：string T， positive integer q
Output：nOcc(T, x) for ∀ x ∈ Σq s.t. nOcc(T, x) > 0
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T =
q =  3

abaababaab
Example

3-gram nOcc
aab
aba
baa
bab

Input：string T， positive integer q
Output：nOcc(T, x) for ∀ x ∈ Σq s.t. nOcc(T, x) > 0
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abaababaab
Example

Input：string T， positive integer q
Output：nOcc(T, x) for ∀ x ∈ Σq s.t. nOcc(T, x) > 0

q-gram Non-overlapping Frequencies Problem

q-gram Non-overlapping Frequencies Problem

We want to solve this problem when string T is given in compressed form.



Straight Line Program (SLP)
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✦ SLP can represent the output of well-known compression schemes.
✦ e.g. RE-PAIR SEQUITUR, LZ78, LZW

✦ LZ77, LZSS of size m can be quickly transformed 
to SLP of size O(m log |T |) .

Definition (Straight Line Program)

Straight Line Program is a context free grammar in the 
Chomsky normal form that derives a single string

X1 = expr1, X2 = expr2, ...., Xn = exprn

expri ∈ Σ or
expri = Xl・Xr (l, r < i)

[Rytter, 2003]

derivation rules : 



Example SLP

D = X1 = a
X2 = b
X3 = X1 X2

X4 = X1 X3

X5 = X3 X4

X6 = X4 X5 

X7 = X6 X5
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n = |D| = 7

Derivation Tree

Length of decompressed string can be Θ(2n)

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =



cX1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13

Example SLP

D = X1 = a
X2 = b
X3 = X1 X2

X4 = X1 X3

X5 = X3 X4

X6 = X4 X5 

X7 = X6 X5
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n = |D| = 7

Derivation Tree

Length of decompressed string can be Θ(2n)

T =

X7

X6

X5
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Uncompressed 
String

SLP
(Previous Work)

q-gram Freq O(|T |) 
time and space

O(qn)
time and space

2-gram non-
overlapping Freq

O(|T |)
time and space

O(n4 log n) time
O(n3) space

q-gram non-
overlapping Freq

O(|T |)
time and space -

[Inenaga and Bannai, 2009][1]

[2]

[1]

[2] [Goto et al, 2011]
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SLP
(This Work)

-
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O(qn) algorithm for 
q-gram Frequencies Problem on SLP
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[Goto et al., 2011]



Occ*: Crossing Occurrences
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P
P

P

Xi 

Xl Xr

✦ For Xi = Xl Xr , an occurrence of P crosses Xi, 
if P starts in Xl and ends in Xr.

✦ Denote the set of such occurrences by Occ*(Xi, P).
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vOcc

D = X1 = a
X2 = b
X3 = X1 X2

X4 = X1 X3

X5 = X3 X4

X6 = X4 X5 

X7 = X6 X5
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n = |D| = 7

Derivation Tree

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13

vOcc(Xi): the number of occurrence Xi in the derivation tree of Xn

T =

Example vOcc(X4) = 3



21

Calculating Frequency by Occ*(Xi, P)
Lemma 1

|Occ(T,P)| =
n

∑
i=1

|Occ∗(Xi,P)| · vOcc(Xi)
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Calculating Frequency by Occ*(Xi, P)

T

For any occurrence of substring P in T,
there uniquely exists Xi  such that P crosses Xi.

P PP
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Xi1 Xi1
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P
P P
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Calculating Frequency by Occ*(Xi, P)

T

For any occurrence of substring P in T,
there uniquely exists Xi  such that P crosses Xi.

P PP

For each variable Xi, 
- the number of times P crosses Xi is |Occ*(Xi, P)|.
- Xi  appears in the derivation tree vOcc(Xi) times.

Lemma 1

Xn

|Occ(T,P)| =
n

∑
i=1

|Occ∗(Xi,P)| · vOcc(Xi)

Xi1 Xi1
Xi2

P
P P

Xi2
Xi2

vOcc(      ) = 2, vOcc(      ) = 1
|Occ*(      , P)| = 2, |Occ*(      , P)| = 1

Frequency of P = 2 ・ 2 + 1 = 5

Xi1
Xi1



Computing the Number of Crossing Occurrences
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For all Xi =Xl Xr, let ti = sl pr

pr is the length-(q-1) prefix of Xr

sl is the length-(q-1) suffix of Xlwhere

・・・・

Xi 

Xl Xr

q-1 q-1

sl pr
the number of occurrences of q-gram in ti 
equals to that of crossing occurrences in Xi. ti =

|Occ*(Xi, ti[ j .. j+q-1])| = |Occ(ti, ti[ j .. j+q-1])|

Lemma 2

for P ∈ Σq, 

where 1 ≦ j ≦ |ti|-q+1

|Occ(T,P)| =
n

∑
i=1

|Occ(ti,P)| · vOcc(Xi)



Algorithm for SLP q-gram Frequencies Problem
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SLP q-gram Frequencies Problem 
can be solved in O(qn) time and space.

Theorem 1

Idea:
Using the suffix array of the concatenation of all ti’s,
plus a linear-time construction algorithm of suffix arrays,
we can solve the SLP q-gram frequency problem in O(qn) time.



Algorithm for q-gram 
Non-overlapping Frequencies Problem
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Xi

Xl Xr

How to deal with crossing occurrences
✦ A crossing occurrence of P in Xi may overlap a crossing 

occurrence of  P in another variable Xl.

P
P
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Xi

Xl Xr

How to deal with crossing occurrences
✦ A crossing occurrence of P in Xi may overlap a crossing 

occurrence of  P in another variable Xl.

P
P

✦ our strategy is that for string P which crosses Xi,
✦ we compute the interval of maximum chain of overlapping 

occurrences of P.
✦ we count nOcc in its interval only if the interval cannot be 

extended either to the left or right.



Longest Overlapping Cover on SLP
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locq of “aba” in X6

X2 X1

b a a ab b a b a

X4

X1 X2
X3

X2 X1
X4

X5
X1

X6
X7

X9

a b

X1 X2
X3

X2 X1
X4

X8



Longest Overlapping Cover on SLP
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locq of “aba” in X9

✦ Notice that locq in the variable Xi may or may not extend in Xi’s ancestor.

X2 X1

b a a ab b a b a

X4

X1 X2
X3

X2 X1
X4

X5
X1

X6
X7

X9

a b

X1 X2
X3

X2 X1
X4

X8
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locq of “aba” in X9

X2 X1

b a a ab b a b a

X4

X1 X2
X3

X2 X1
X4

X5
X1

X6
X7

X9

a b

X1 X2
X3

X2 X1
X4

X8

≧ q - 1 ≧ q - 1

“aba” never overlap in
 the ancestor of X9



Longest Overlapping Cover on SLP
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Lemma 4

nOcc(T,P) =
n

∑
i=1

nOcc(Xi[b : e],P) · vOcc(Xi)

where (b, e) is locq of P in T, and [b-q+1 : e+q-1] crosses Xi 
(0 < b-q+1 ≦ |Xl| ≦ e+q-1 ≦ |Xi|)

✦ Let (b, e) is a pair of beginning and ending point of locq in the 
variable Xi, we obtain this lemma
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Lemma 5
For all variables Xi = Xl Xr, and integer |Xl| - (2q-1) ≦ j ≦ |Xl|+q-1,
locq(Xi, j) = (b, e) and nOcc(Xi[b:e], Xi[ j : j+q-1] can be 
computed in O(q2n) time and O(qn) space.

Theorem 2
Non-overlapping frequencies problem on SLP can be solved in O(q2n) 
time and O(qn) space.
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Uncompressed 
String

SLP
(Previous Work)

q-gram Freq O(|T |) 
time and space

O(qn)
time and space

2-gram non-
overlapping Freq

O(|T |)
time and space

O(n4 log n) time
O(n3) space

q-gram non-
overlapping Freq

O(|T |)
time and space -

[2]

[1]

SLP
(This Work)

-

O(n)
 time and space

O(q2n) time
O(qn) space

[Inenaga and Bannai, 2009][1]
[2] [Goto et al, 2011]
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Thank you for 
　　　　your attention
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Xi
Xl Xr

② locq in Xl ③ locq in Xl

max LnOcc of ② min RnOcc of ③

nOcc within loc = nOcc within ② + nOcc within ③
                                                        + nOcc within  ①

①

nOcc in locq



no q-gram頻度の重み付け
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なにもしない

重み 0 重み
P : vOcc(Xi) *
             locqのno頻度

重み
P : vOcc(Xi) * locqのno頻度

Xi

Xl Xr Xl Xr Xl Xr

• すべての変数で対応する locq の範囲が確定した q-gram の
重み付けを行う

locq

Xi Xi

≧ q-1 ≧ q-1
locq

≧ q-1 ≧ q-1
locq

< q-1

locqの範囲が確定 locqの範囲が確定
対応するq-gramがまたがる 対応するq-gramがまたがらない

PP P
< q-1



no q-gram頻度の重み付け
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Xi

Xl Xr

≧ q-1 ≧ q-1lscq lpcq

LnOccの最大値 RnOccの最小値

locのno頻度 = lscのno頻度 + lpcのno頻度 + ①の範囲のno頻度

①

全ての変数についてlocqのno頻度を求めることで
SLP no頻度問題を O(q2n) で解くことが出来る

各変数に対しまたがるq-gramは
O(q2)でlocqのno頻度を求めることが可能
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Xi
Xl Xr

≧ q-1 ≧ q-1locq locq

maximum of LnOcc minimum of RnOcc

nOcc within loc= nOcc within loc + nOcc within loc
                                                        + nOcc within  range of ①

①

bb
be

ee
eb
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✦ For all variables Xi, we count non-overlapping frequencies of loc 
which crosses Xi rather than q-gram which crosses Xi

Xi

Xl Xr

Crossing Occurrence

loc(Xi, j)
eb
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Crossing Occurrence

Xi

Xl Xr

loc(Xi, j)
eb

We count the crossing
 interval [b-q+1:e+q-1]

✦ For all variables Xi, we count non-overlapping frequencies of loc 
which crosses Xi rather than q-gram which crosses Xi

If b < q or |Xi|-q < e,
loc can be overlaped the q-gram 
crossing in Xi’s ancestor
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Xi

Xl Xr

✦ overlapping algorithm doesn’t care whether or not a q-gram 
which crosses in Xi is overlapping the same q-gram in Xl or Xr

Difference of Algorithm for
 Overlapping Frequencies Problem

P
P P

non-overlapping frequency of P is 2, 
but algorithm count 3 time Xi, Xl, Xr
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✦ Important Key is that non-overlapping frequency depend on the 
way of overlapping in the chain of overlapping

Xi

Xl Xr

P
P P

P P

Difference of Algorithm for
 Overlapping Frequencies Problem

We want to know
・the interval of the maximum chain of 
overlapping occurrences of q-gram 
・non-overlapping frequency in the interval



Longest Overlapping Cover
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locq(T, j) = (b, e) is the beginning and ending positions of the 
maximum chain of overlapping occurrences of q-gram T [ j : j + q - 1]

longest overlapping cover

j

T
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locq(T, j) = (b, e) is the beginning and ending positions of the 
maximum chain of overlapping occurrences of q-gram T [ j : j + q - 1]

longest overlapping cover

j

T

locq(T, j) = (b, e)

b e
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Xi

Xl Xr

✦ overlapping algorithm doesn’t care whether or not a q-gram 
which crosses in Xi is overlapping the same q-gram in Xl or Xr

Difference of Algorithm for
 Overlapping Frequencies Problem

P
P P

non-overlapping frequency of P is 2, 
but algorithm count 3 time Xi, Xl, Xr
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✦ Important Key is that non-overlapping frequency depend on the 
way of overlapping in the chain of overlapping

Xi

Xl Xr

P
P P

P P

Difference of Algorithm for
 Overlapping Frequencies Problem

We want to know
・the interval of the maximum chain of 
overlapping occurrences of q-gram 
・non-overlapping frequency in the interval


