Computing g-gram
Non-overlapping Frequencies
on SLP Compressed Texts

Kyushu University

(OKeisuke Goto, Hideo Bannai,
Shunsuke Inenaga, Masayuki Takeda

Background

+ Large scale string data 1s usually stored in compressed form.

Background

Large scale string data is usually stored in compressed form.

compressed
string

Background

Large scale string data is usually stored in compressed form.

In order to process such data, we usually need to decompress,
which requires a lot of space and time.

compressed
string

Background

Large scale string data is usually stored in compressed form.

In order to process such data, we usually need to decompress,
which requires a lot of space and time.

compressed
string

€S>

6600(“0

Large Scale . .
- D>(string processing,
Strlng ~ Edit Distance |

Background

Large scale string data is usually stored in compressed form.

In order to process such data, we usually need to decompress,
which requires a lot of space and time.

/ N
7o a2
/0 (@) (@))o
| A

N T /

compressed

Large Scale _ .
- D>(string proceseing,
Strlng ~ Edit Distance |

Background

Large scale string data is usually stored in compressed form.

In order to process such data, we usually need to decompress,

which requires a lot of space and time.
One solution 1s to process compressed strings

without explicit decompression.

compressed
string

[1]
2]

[1] [Lifshits, Y. 2007]
[2] [Hermelin, D. 2009] 4

Background

Large scale string data is usually stored in compressed form.

In order to process such data, we usually need to decompress,

which requires a lot of space and time.
One solution 1s to process compressed strings

without explicit decompression.

~=). string
‘o o & ({GOOD!

~
l_\
k=
)

/(@) (@) -
l/;;;;;; (|__r—{—K—_|_) :::::\| without explicit
§ T Py \/ decompression

string processing, |
e.g. Pattern Matching,
Edit Distance [2]

[1] [Lifshits, Y. 2007]
[2] [Hermelin, D. 2009] 4

Background

Large scale string data is usually stored in compressed form.

In order to process such data, we usually need to decompress,

which requires a lot of space and time.
One solution 1s to process compressed strings

without explicit decompression.

= L string
- NS v
e ‘e . | GOOD!
l/iiiiii (l-r_{}_-l-) i \| without explicit
N N Y \/ decompression
string processing, i
: : : e.qg. Pattern Matchinq,
this work: algorithm for computing J Edit Distance [2]g
g-gram non-overlapping frequencies (1] [Lifshits, Y. 2007}
on compressed strings 2] [Hermelin, D. 2009]

Occurrence and Frequency

+ Occurrence of pattern P 1n text T
Occ(T, P={i| Ti..i+|P|-1)]=P,0 =i <|T]- |P| }

+ Frequency of P 1n T’ |Occ(T, P)|

O(112(3|4(5|6|7(8|9(1411141314131414

T = |alblalal|blal|blalal|blal|blalalblalbla

Occ(T, aba) = 10, 3, 5, 8, 10, 13, 15}

Frequency of “aba” =7

Non-overlapping Occurrence

Any two occurrences ky, k2 € Occe(1;, P) with k1 < k2

are said to be overlapping if k2 < k1 +|P
and non-overlapping otherwise.

)

Non-overlapping Occurrence

Any two occurrences ky, k2 € Occe(1;, P) with k1 < k2

are said to be overlapping if k2 < k1 +|P
and non-overlapping otherwise.

)

O(112]3(4|5|6(7|8|9(1417114131415914174

T = |blalblalalalala|c|c|lalblalblal|blalc

Occ(T, aaa) = {3,4,5}

Non-overlapping Occurrence

Any two occurrences ky, k2 € Occe(1;, P) with k1 < k2

are said to be overlapping if k2 < k1 +|P
and non-overlapping otherwise.

)

O(112]3(4|5|6(7|8|9(1417114131415914174

T = |blalblalalalala|c|c|lalblalblal|blalc

\

_ J

Occ(T, aaa) = {3,4,5} \

(

overlapping

(
occurrences Of dda
. J

))

Non-overlapping Occurrence

Any two occurrences ky, k2 € Occe(1;, P) with k1 < k2

are said to be overlapping if k2 < k1 +|P
and non-overlapping otherwise.

)

O(112]3(4|5|6(7|8|9(1417114131415914174

T = |blalblalalalala|c|c|lalblalblal|blalc

Occ(T, aba) = {1, 10, 12, 14}

Non-overlapping Occurrence

and non-overlapping otherwise.

Any two occurrences ki, k2 € Occ(1; P) with k1 < k
are said to be overlapping if k2 < k1 +|P

)

O(112(3|4|5|6|7(8|9[1011

112

13141316179

T = |blalblalalalalal|c|clalb

~

(l

C
Occ(T, aba) = {1, 10, 12, 14} N

_

overlapping

occurrences of "aba”

~N

J

7

Non-overlapping Occurrence

Any two occurrences ky, k2 € Occe(1;, P) with k1 < k2

are said to be overlapping if k2 < k1 +|P
and non-overlapping otherwise.

)

O0(112(3|4(5|6|7(8|9(10111413141514174

T = |blalblalalalala|c|c|lalblalblal|blalc

non-overlapping frequency
nQOcc(T, P): the size of largest subset of Occ(T, P) where any
two occrences 1n the set are non-overlapping

Non-overlapping Occurrence

Any two occurrences ky, k2 € Occe(1;, P) with k1 < k2

are said to be overlapping if k2 < k1 +|P
and non-overlapping otherwise.

)

O0(112(3|4(5|6|7(8|9(10111413141514174

T = |blalblalalalala|c|c|lalblalblal|blalc

non-overlapping frequency
nQOcc(T, P): the size of largest subset of Occ(T, P) where any
two occrences 1n the set are non-overlapping

Non-overlapping Occurrence

Any two occurrences ky, k2 € Occe(1;, P) with k1 < k2

are said to be overlapping if k2 < k1 +|P
and non-overlapping otherwise.

)

O(112]3(4|5|6(7|8|9(1417114131415914174

T = |blalblalalalala

=

non-overlapping frequency
nQOcc(T, P): the size of largest subset of Occ(T, P) where any
two occrences 1n the set are non-overlapping

nQOcc(T, aba) = 3

g-gram Non-overlapping Frequencies Problem

g-gram Non-overlapping Frequencies Problem

Input - string 7, positive integer ¢

Output - nOcc(T, x) for Vx €24 s.t. nOcc(T, x) > 0

10

g-gram Non-overlapping Frequencies Problem

g-gram Non-overlapping Frequencies Problem

Input - string 7, positive integer ¢

Output - nOcc(T, x) for Vx €24 s.t. nOcc(T, x) > 0

Example ¢g= 3

' = abaababaab 3-gram nQOcc
aab

aba

baa
bab

10

g-gram Non-overlapping Frequencies Problem

g-gram Non-overlapping Frequencies Problem

Input - string 7, positive integer ¢

Output - nOcc(T, x) for Vx €24 s.t. nOcc(T, x) > 0

Example ¢g= 3

1= abaababaab 3-gram nOcc
aab 2
aba
baa
bab

11

g-gram Non-overlapping Frequencies Problem

g-gram Non-overlapping Frequencies Problem

Input - string 7, positive integer ¢

Output - nOcc(T, x) for Vx €24 s.t. nOcc(T, x) > 0

Example ¢g= 3

I'= abaababaab 3-gram nOcc
— aab 2
2
baa
bab

12

g-gram Non-overlapping Frequencies Problem

g-gram Non-overlapping Frequencies Problem

Input - string 7, positive integer ¢

Output - nOcc(T, x) for Vx €24 s.t. nOcc(T, x) > 0

Example ¢g= 3

1= abaababaab 3-gram nOcc
aab 2
aba 2
baa 2
bab 1

We want to solve this problem when string 7' 1s given in compressed form.
13

Straight Line Program (SLP)

Definition (Straight Line Program)

Straight Line Program 1s a context free grammar 1n the

Chomsky normal form that derives a single string
N

..
derivation rules :
X1 = expri, X2= expry,, Xn = €XPrIn

expri & 2 or
expri =X; * X- ([, r <i)

_

+ SLP can represent the output of well-known compression schemes.

+ e.g. RE-PAIR SEQUITUR, LZ78, LZW

+ LZ77, LZSS of size m can be quickly transformed
to SLP of size O(m log |T'|) . [Rytter, 2003]

14

Example SLP

- N Derivation Tree X7
Xo= b Xe X5
_— T T
X3 = X1 Xo X4 X5 X3 X4
B N\ — T~ /7 N\ RN
X4 = X1 X3 X1 X3 X3 /X4\ X1 X2 X1 X3
_ /N /N ... /N
A5 = X344 X1 X2 X1 X2 X1 X3 o X X2
Xo = X4 X JE T T A VA T T
Xi = X X
D) =7 T= a a b a b a a b ab a a b
n=|D| = 1 2 3 4 5 6 7 8 9 10 11 12 13
\ J

Length of decompressed string can be @(2")

15

Example SLP

r 2 Der1vation Tree X7
D=Xx1= a
X2= b
X3 = X1 Xo X
Xs = X1 X3
X5 = X3 X4
X6 = Xa.Xs
X7 = X6 Xs
Y 7= a a b a b a a b a b a a b
\”_|D|_7) 1 2 3 4 5 6 7 8 9 10 11 12 13

Length of decompressed string can be @(2")

16

Previous Work

Uncompressed SLP
String (Previous Work)
O(|T') O(gn) '*!
g-gram Freq time and space | time and space
[l
2-gram non- O(T) O(n* log n) tlm]e
overlapping Freq time and space O(n?) space
g-gram non- O(T))]
overlapping Freq time and space

[1] [Inenaga and Bannai, 2009]
[2] [Goto et al, 2011]

17

Previous Work

Uncompressed SLP SLP
String (Previous Work) (This Work)
O(IT1) O(gn)
q-gram Freq time and space time and space)
1
2-gram non- O(T)) O(n* log n) ti[m]e O(n)
overlapping Freq time and space O(n?) Space time and space
g-gram non- O(|T|)) O(g’n) time
overlapping Freq time and space (O(gn) space

[1] [Inenaga and Bannai, 2009]
[2] [Goto et al, 2011]

17

O(gn) algorithm for
g-gram Frequencies Problem on SLP

[Goto et al., 2011]

18

Occ*: Crossing Occurrences

-

-

For X;= X; X, an occurrence of P crosses X,
1f P starts in X7 and ends in X;.

Denote the set of such occurrences by Occ*(Xi, P).

19

vOcc

N Derivation Tree X7
1) = X1 = a //,///”//’ \\\\‘\\\\\\
X, = b X6\ /Xs
X3 = X1.X» ‘!!gii/// X5 1&2’
_ — /7 \
X4 = X1.X3 X1 X3 X3 @ X1 X2 X1 X3
X5 = X3X4 Y S I A
X1 X2 X1 X2 X X3 : X1 X2
X6 = X4.Xs bbb X/ }(]
X7 = X6 X5 : : : :1 ? ; E
i = a ababaababaahb
n=|D|= 1 2 3 4 5 6 7 8 9 11 12 13

vOcc(X:): the number of occurrence X; in the derivation tree of X,

Example vOcc(Xs) =3

20/ 36

Calculating Frequency by Occ*(Xi;, P)

|Occ(T,P)| = Z Occ™(X;, P)|-vOcc(X;)
i=1

21

Calculating Frequency by Occ*(Xi;, P)

|Occ(T,P)| = Z Occ™(X;, P)|-vOcc(X;)
i=1

4)
For any occurrence of substring P in 7,

there uniquely exists X; such that P crosses X..

_ J X
n

22

Calculating Frequency by Occ*(Xi;, P)

|Occ(T,P)| = Xn: Occ™(X;, P)| - vOcc(X;)

=1

-
For any occurrence of substring P in 7,

there uniquely exists X; such that P crosses X..
\.

" For each variable Xi,
- the number of times P crosses X; is |Occ*(X;, P)|.

- X; appears 1n the derivation tree vOcc(X;) times.
.

22

Calculating Frequency by Occ*(Xi;, P)

|Occ(T,P)| = Xn: Occ™(X;, P)| - vOcc(X;)

=1

-
For any occurrence of substring P in 7,

there uniquely exists X; such that P crosses X..
\.

" For each variable Xi,
- the number of times P crosses X; is |Occ*(X;, P)|.

- X; appears 1n the derivation tree vOcc(X;) times.
.

vOcc(Xj,) =2, vOce(Xj,) = 1
0c*(X;,, P)| =2, |0cc’ (K, , P)| = 1

Frequencyof P=2 *« 2+1=5

22

Computing the Number of Crossing Occurrences

For all X; =X; X, let t, =s;p, where s;1s the length-(g-1) suffix of X
pr1s the length-(g-1) prefix of X,

-

the number of occurrences of g-gram 1in ¢

equals to that of crossing occurrences in X = %‘

Occ™(Xi, til j .. jtq-1])| = |Oce(ti, ti] j .. jtq-1])]

where 1 = = |t)|-g+1 e
J e

for P € 34, |Occ(T,P)| =} |Occ(t;,P)|-vOcc(X;)
i=1

23

Algorithm for SLP g-gram Frequencies Problem

SLP g-gram Frequencies Problem

can be solved in O(gn) time and space.

Idea:
Using the suffix array of the concatenation of all #’s,

plus a linear-time construction algorithm of suffix arrays,
we can solve the SLP g-gram frequency problem in O(gn) time.

24

Algorithm for g-gram
Non-overlapping Frequencies Problem

25

How to deal with crossing occurrences

A crossing occurrence of P in X; may overlap a crossing
occurrence of P in another variable X..

26

How to deal with crossing occurrences

A crossing occurrence of P in X; may overlap a crossing
occurrence of P in another variable X..

our strategy 1s that for string P which crosses X;,

we compute the interval of maximum chain of overlapping
occurrences of P.

we count nQOcc 1n 1ts interval only 1f the interval cannot be
extended either to the left or right.

26

Longest Overlapping Cover on SLP

X9
/ \
X7 X8
X4 X6 X4 X3
/" \ T /7 \ /7 \
X2 X1 X3 X5 X2 X1 Xi X2
L /N N R
X1 Xo X1 Xa
E E E /7 \
Xz X1

bafabababa a b

 —,
+ locgof “aba” in X6

i

Longest Overlapping Cover on SLP

Notice that loc, in the variable X; may or may not extend in X;’s ancestor.

X9
/ \
X7 X8
— T T
X4 X6 X4 X3
/7 \ T /7 \ /7 \
X2 X1 X3 X5 X2 X1 Xi X2
L /N N IR
X1 Xo X1 Xa
E | | /7 \

A Xz X1 , b
b a Ea b a b a b a a b
| e |
: loc,of “aba” 1n Xo :

28

Longest Overlapping Cover on SLP

(

_

X9
X7 X8
R X6 X4 X3
“aba” never overlap in X/ \X X/ }(X/ }(
3 5 2 1 1 2
the ancestor of Xo 7 AN | | E E

X2 X1 Xa

29

Longest Overlapping Cover on SLP

Let (b, e) 1s a pair of beginning and ending point of /oc, 1n the
variable X;, we obtain this lemma

nOcc(T Z nOcc(X;|b: e|,P)-vOcc(X;)

where (b, e) 1s loc; of P1n T, and [b-g+1 : et+g-1] crosses X;
(0 <b-g+1 = |X|| = etg-1 = |Xi)

30

For all variables X; = X; X, and integer |X]| - (2¢-1) = = |X||+q-1,
locy(Xi, j) = (b, e) and nOcc(Xi|b:e], Xi| j : j£g-1] can be
computed in O(g?n) time and O(gn) space.

Non-overlapping frequencies problem on SLP can be solved in O(g?n)
time and O(gn) space.

31

Summary

Uncompressed SLP SLP
String (Previous Work) (This Work)
O(IT1) O(gn)
q-gram Freq time and space time and space B
1
2-gram non- O(T)) O(n* log n) ti[m]e O(n)
overlapping Freq time and space O(n?) Space time and space
g-gram non- O(|T|) i O(g’n) time
overlapping Freq time and space (O(gn) space

[1] [Inenaga and Bannai, 2009]
[2] [Goto et al, 2011]

32

Thank you for
your attention

nOcc 1n loc,

Xi
Xi X,
: :
: A :
— — —
—>, =
: @ loc, in X E : : @ loc, in X !
[— F« FI:II:I
max LnOcc of 2 min RnOcc of 3)

nOcc within loc = nOcc within @) + nOcc within @)
+ nOcc within (D

34

no g-gram#H L D B AL 1)

o IRNTORBTHNIGT % locy DEIPHAMERE L 72 g-gram D
HAMIT 21T

_q1(__)<q1

locy locy
loc, D HiH DSEE locy D & JH DS HEE
ST B g-gramD3E 72532 NIRRT bg-gramP 725365 2
= (= A - A
(E#0) =4 * =
F: VOCCZ(OJ((:i)G)noij\E 5 P : vOcc(Xy) * loc,DnoB8[E
q =
\ Y, \. J

35

no g-gram#HRL O B A4S 1T

BRI U 72035 g-gram 3
O(q°) Tloc,DnoBHE % K& 5 Z & H3H]HE

<=

1 <

Isc, Ipcq

LnOccD i RAE RnOccD tx/)ME

. E——

g-1

ZOCODHO}‘/EE/Q = lSC@DO%‘E;@ + lpc@no%ﬁﬁ,@ + @O)%ﬁ i

DnotH

7

>

ETDEBINZ D\ Tloc, DnoBHE%# KD 5 Z & T

SLP no#HE % O(g’n) T Z EDBHZK S

36

; Xi X

e

: : be :

: ee bb :

: : R E :

: — :
Y I N P

: 16 ‘): € ﬂl = :

iz g-11 loc, G locy r=g-1
[— F« = [—
maximum of LnOcc minimum of RnOcc

nOcc within loc= nOcc within loc + nOcc within loc
+ nOcc within range of (D

37

Crossing Occurrence

For all variables X;, we count non-overlapping frequencies of loc
which crosses X; rather than g-gram which crosses X;

38

Crossing Occurrence

For all variables X;, we count non-overlapping frequencies of loc
which crosses X; rather than g-gram which crosses X;

(Ifh < g or | Xi|-g <e,
loc can be overlaped the g-gram

crossing in X;’s ancestor
_ J

4)

We count the crossing
interval [b-g+1:et+qg-1]

. J

loc(Xi, j)

39

Difference of Algorithm for
Overlapping Frequencies Problem

overlapping algorithm doesn’t care whether or not a g-gram
which crosses 1n X; 1s overlapping the same g-gram in X; or X,

4)

non-overlapping frequency of P 1s 2,

but algorithm count 3 time X;, X, X,
_ J

40

Difference of Algorithm for
Overlapping Frequencies Problem

Important Key 1s that non-overlapping frequency depend on the
way of overlapping in the chain of overlapping

We want to know
* the interval of the maximum chain of

overlapping occurrences of g-gram
* non-overlapping frequency in the interval

41

Longest Overlapping Cover

A longest overlapping cover

m(T ,J) = (b, e) 1s the beginning and ending positions of the

maximum chain of overlapping occurrences of g-gram 7'[j :j + g - 1]

_

J

42

Longest Overlapping Cover

A longest overlapping cover

m(T ,J) = (b, e) 1s the beginning and ending positions of the

maximum chain of overlapping occurrences of g-gram 7'[j :j + g - 1]

_

J

42

Longest Overlapping Cover

A longest overlapping cover

m(T ,J) = (b, e) 1s the beginning and ending positions of the

maximum chain of overlapping occurrences of g-gram 7'[j:j+ g - 1]

_

J

42

Longest Overlapping Cover

A longest overlapping cover

m(T ,J) = (b, e) 1s the beginning and ending positions of the

maximum chain of overlapping occurrences of g-gram 7'[j:j+ g - 1]

_

J

locy(T, j) = (b, €)

42

Difference of Algorithm for
Overlapping Frequencies Problem

overlapping algorithm doesn’t care whether or not a g-gram
which crosses 1n X; 1s overlapping the same g-gram in X; or X,

4)

non-overlapping frequency of P 1s 2,

but algorithm count 3 time X;, X, X,
_ J

43

Difference of Algorithm for
Overlapping Frequencies Problem

Important Key 1s that non-overlapping frequency depend on the
way of overlapping in the chain of overlapping

We want to know
* the interval of the maximum chain of

overlapping occurrences of g-gram
* non-overlapping frequency in the interval

44

