
Computing q-gram
Non-overlapping Frequencies

on SLP Compressed Texts

Kyushu University
◯Keisuke Goto，Hideo Bannai，
Shunsuke Inenaga, Masayuki Takeda

1

Large Scale
String

Background
✦ Large scale string data is usually stored in compressed form.

2

Background
✦ Large scale string data is usually stored in compressed form.

compressed
string

2

Background
✦ Large scale string data is usually stored in compressed form.

compressed
string

3

✦ In order to process such data, we usually need to decompress,
which requires a lot of space and time.

Large Scale
String

Background
✦ Large scale string data is usually stored in compressed form.

compressed
string

decompress

3

✦ In order to process such data, we usually need to decompress,
which requires a lot of space and time.

string processing,
e.g. Pattern Matching,
 Edit Distance

Large Scale
String

Background
✦ Large scale string data is usually stored in compressed form.

compressed
string

decompress

3

✦ In order to process such data, we usually need to decompress,
which requires a lot of space and time.

string processing,
e.g. Pattern Matching,
 Edit Distance

　　 　 　＿＿＿_
　 　　　／　　 　 　＼
　　　／　 _ノ 　ヽ､_　 ＼
　 ／ oﾟ(（●）) (（●）)ﾟo ＼ 　
　 ¦　　　　 （__人__）'　　　　¦
　 ＼　　 　　｀⌒´ 　 　 ／

BAD

Background
✦ Large scale string data is usually stored in compressed form.

compressed
string

4

✦ One solution is to process compressed strings
without explicit decompression.

✦ In order to process such data, we usually need to decompress,
which requires a lot of space and time.

[1] [Lifshits, Y. 2007]

[1]

[2] [Hermelin, D. 2009]

[2]

Background
✦ Large scale string data is usually stored in compressed form.

string processing,
e.g. Pattern Matching,
 Edit Distance

compressed
string

without explicit
decompression

4

✦ One solution is to process compressed strings
without explicit decompression.

✦ In order to process such data, we usually need to decompress,
which requires a lot of space and time.

　　　　　　＿＿＿_
　 　　　／⌒　　⌒＼
　　　／（ ●） 　（●）＼
　 ／::::::⌒（__人__）⌒::::: ＼
　 ¦　　　　　¦r┬-¦　　　　　¦
　 ＼ 　　 　 `ー'´ 　 　 ／

GOOD!

[1] [Lifshits, Y. 2007]

[1]

[2] [Hermelin, D. 2009]

[2]

Background
✦ Large scale string data is usually stored in compressed form.

string processing,
e.g. Pattern Matching,
 Edit Distance

compressed
string

without explicit
decompression

4

✦ One solution is to process compressed strings
without explicit decompression.

this work: algorithm for computing
q-gram non-overlapping frequencies
 on compressed strings

✦ In order to process such data, we usually need to decompress,
which requires a lot of space and time.

　　　　　　＿＿＿_
　 　　　／⌒　　⌒＼
　　　／（ ●） 　（●）＼
　 ／::::::⌒（__人__）⌒::::: ＼
　 ¦　　　　　¦r┬-¦　　　　　¦
　 ＼ 　　 　 `ー'´ 　 　 ／

GOOD!

[1] [Lifshits, Y. 2007]

[1]

[2] [Hermelin, D. 2009]

[2]

Occurrence and Frequency

✦ Occurrence of pattern P in text T:
Occ(T, P)={ i | T[i..(i+|P|-1)] = P, 0 ≦ i < |T| - |P| }

✦ Frequency of P in T: |Occ(T, P)|

T =

Occ(T, aba) = {0, 3, 5, 8, 10, 13, 15}

0 1 2 3 4 5 6 7 8 9 1011121314151617

a b a a b a b a a b a b a a b a b a

Frequency of “aba” = 7
5

Non-overlapping Occurrence

6

Any two occurrences k1, k2 ∈ Occ(T, P) with k1 < k2
are said to be overlapping if k2 < k1+|P|,
and non-overlapping otherwise.

Non-overlapping Occurrence

6

Any two occurrences k1, k2 ∈ Occ(T, P) with k1 < k2
are said to be overlapping if k2 < k1+|P|,
and non-overlapping otherwise.

T =

0 1 2 3 4 5 6 7 8 9 1011121314151617

b a b a a a a a c c a b a b a b a c

Occ(T, aaa) = {3,4,5}

Non-overlapping Occurrence

6

Any two occurrences k1, k2 ∈ Occ(T, P) with k1 < k2
are said to be overlapping if k2 < k1+|P|,
and non-overlapping otherwise.

T =

0 1 2 3 4 5 6 7 8 9 1011121314151617

b a b a a a a a c c a b a b a b a c

overlapping
occurrences of “aaa”

Occ(T, aaa) = {3,4,5}

Non-overlapping Occurrence

7

Any two occurrences k1, k2 ∈ Occ(T, P) with k1 < k2
are said to be overlapping if k2 < k1+|P|,
and non-overlapping otherwise.

T =

0 1 2 3 4 5 6 7 8 9 1011121314151617

b a b a a a a a c c a b a b a b a c

Occ(T, aba) = {1, 10, 12, 14}

Non-overlapping Occurrence

7

Any two occurrences k1, k2 ∈ Occ(T, P) with k1 < k2
are said to be overlapping if k2 < k1+|P|,
and non-overlapping otherwise.

T =

0 1 2 3 4 5 6 7 8 9 1011121314151617

b a b a a a a a c c a b a b a b a c

overlapping
occurrences of “aba”

Occ(T, aba) = {1, 10, 12, 14}

8

nOcc(T, P): the size of largest subset of Occ(T, P) where any
two occrences in the set are non-overlapping

non-overlapping frequency

Non-overlapping Occurrence

T =

0 1 2 3 4 5 6 7 8 9 1011121314151617

b a b a a a a a c c a b a b a b a c

Any two occurrences k1, k2 ∈ Occ(T, P) with k1 < k2
are said to be overlapping if k2 < k1+|P|,
and non-overlapping otherwise.

8

nOcc(T, P): the size of largest subset of Occ(T, P) where any
two occrences in the set are non-overlapping

non-overlapping frequency

Non-overlapping Occurrence

T =

0 1 2 3 4 5 6 7 8 9 1011121314151617

b a b a a a a a c c a b a b a b a c

Any two occurrences k1, k2 ∈ Occ(T, P) with k1 < k2
are said to be overlapping if k2 < k1+|P|,
and non-overlapping otherwise.

9

nOcc(T, P): the size of largest subset of Occ(T, P) where any
two occrences in the set are non-overlapping

non-overlapping frequency

Non-overlapping Occurrence

T =

0 1 2 3 4 5 6 7 8 9 1011121314151617

b a b a a a a a c c a b a b a b a c

nOcc(T, aba) = 3

Any two occurrences k1, k2 ∈ Occ(T, P) with k1 < k2
are said to be overlapping if k2 < k1+|P|,
and non-overlapping otherwise.

q-gram Non-overlapping Frequencies Problem

10

Input：string T， positive integer q
Output：nOcc(T, x) for ∀ x ∈ Σq s.t. nOcc(T, x) > 0

q-gram Non-overlapping Frequencies Problem

q-gram Non-overlapping Frequencies Problem

10

T =
q = 3

abaababaab
Example

3-gram nOcc
aab
aba
baa
bab

Input：string T， positive integer q
Output：nOcc(T, x) for ∀ x ∈ Σq s.t. nOcc(T, x) > 0

q-gram Non-overlapping Frequencies Problem

T = 3-gram nOcc
aab 2
aba
baa
bab

q = 3

11

abaababaab
Example

q-gram Non-overlapping Frequencies Problem

Input：string T， positive integer q
Output：nOcc(T, x) for ∀ x ∈ Σq s.t. nOcc(T, x) > 0

q-gram Non-overlapping Frequencies Problem

T = 3-gram nOcc
aab 2
aba 2
baa
bab

q = 3

12

abaababaab
Example

q-gram Non-overlapping Frequencies Problem

Input：string T， positive integer q
Output：nOcc(T, x) for ∀ x ∈ Σq s.t. nOcc(T, x) > 0

q-gram Non-overlapping Frequencies Problem

T = 3-gram nOcc
aab 2
aba 2
baa 2
bab 1

q = 3

13

abaababaab
Example

Input：string T， positive integer q
Output：nOcc(T, x) for ∀ x ∈ Σq s.t. nOcc(T, x) > 0

q-gram Non-overlapping Frequencies Problem

q-gram Non-overlapping Frequencies Problem

We want to solve this problem when string T is given in compressed form.

Straight Line Program (SLP)

14

✦ SLP can represent the output of well-known compression schemes.
✦ e.g. RE-PAIR SEQUITUR, LZ78, LZW

✦ LZ77, LZSS of size m can be quickly transformed
to SLP of size O(m log |T |) .

Definition (Straight Line Program)

Straight Line Program is a context free grammar in the
Chomsky normal form that derives a single string

X1 = expr1, X2 = expr2,, Xn = exprn

expri ∈ Σ or
expri = Xl・Xr (l, r < i)

[Rytter, 2003]

derivation rules :

Example SLP

D = X1 = a
X2 = b
X3 = X1 X2

X4 = X1 X3

X5 = X3 X4

X6 = X4 X5

X7 = X6 X5

15

n = |D| = 7

Derivation Tree

Length of decompressed string can be Θ(2n)

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13
T =

cX1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13

Example SLP

D = X1 = a
X2 = b
X3 = X1 X2

X4 = X1 X3

X5 = X3 X4

X6 = X4 X5

X7 = X6 X5

16

n = |D| = 7

Derivation Tree

Length of decompressed string can be Θ(2n)

T =

X7

X6

X5

Previous Work

17

Uncompressed
String

SLP
(Previous Work)

q-gram Freq O(|T |)
time and space

O(qn)
time and space

2-gram non-
overlapping Freq

O(|T |)
time and space

O(n4 log n) time
O(n3) space

q-gram non-
overlapping Freq

O(|T |)
time and space -

[Inenaga and Bannai, 2009][1]

[2]

[1]

[2] [Goto et al, 2011]

Previous Work

17

Uncompressed
String

SLP
(Previous Work)

q-gram Freq O(|T |)
time and space

O(qn)
time and space

2-gram non-
overlapping Freq

O(|T |)
time and space

O(n4 log n) time
O(n3) space

q-gram non-
overlapping Freq

O(|T |)
time and space -

[Inenaga and Bannai, 2009][1]

[2]

[1]

SLP
(This Work)

-

O(n)
 time and space

O(q2n) time
O(qn) space

[2] [Goto et al, 2011]

O(qn) algorithm for
q-gram Frequencies Problem on SLP

18

[Goto et al., 2011]

Occ*: Crossing Occurrences

19

P
P

P

Xi

Xl Xr

✦ For Xi = Xl Xr , an occurrence of P crosses Xi,
if P starts in Xl and ends in Xr.

✦ Denote the set of such occurrences by Occ*(Xi, P).

/ 36

vOcc

D = X1 = a
X2 = b
X3 = X1 X2

X4 = X1 X3

X5 = X3 X4

X6 = X4 X5

X7 = X6 X5

20

n = |D| = 7

Derivation Tree

X1 X2

a ba a ab a b a b a a b

X1 X3
X1 X2
X3

X1 X2
X3

X4
X1

X5X4
X6

X1 X2
X3

X1 X2
X3

X4
X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13

vOcc(Xi): the number of occurrence Xi in the derivation tree of Xn

T =

Example vOcc(X4) = 3

21

Calculating Frequency by Occ*(Xi, P)
Lemma 1

|Occ(T,P)| =
n

∑
i=1

|Occ∗(Xi,P)| · vOcc(Xi)

22

Calculating Frequency by Occ*(Xi, P)

T

For any occurrence of substring P in T,
there uniquely exists Xi such that P crosses Xi.

P PP

Lemma 1

Xn

|Occ(T,P)| =
n

∑
i=1

|Occ∗(Xi,P)| · vOcc(Xi)

Xi1 Xi1
Xi2

P
P P

22

Calculating Frequency by Occ*(Xi, P)

T

For any occurrence of substring P in T,
there uniquely exists Xi such that P crosses Xi.

P PP

For each variable Xi,
- the number of times P crosses Xi is |Occ*(Xi, P)|.
- Xi appears in the derivation tree vOcc(Xi) times.

Lemma 1

Xn

|Occ(T,P)| =
n

∑
i=1

|Occ∗(Xi,P)| · vOcc(Xi)

Xi1 Xi1
Xi2

P
P P

22

Calculating Frequency by Occ*(Xi, P)

T

For any occurrence of substring P in T,
there uniquely exists Xi such that P crosses Xi.

P PP

For each variable Xi,
- the number of times P crosses Xi is |Occ*(Xi, P)|.
- Xi appears in the derivation tree vOcc(Xi) times.

Lemma 1

Xn

|Occ(T,P)| =
n

∑
i=1

|Occ∗(Xi,P)| · vOcc(Xi)

Xi1 Xi1
Xi2

P
P P

Xi2
Xi2

vOcc() = 2, vOcc() = 1
|Occ*(, P)| = 2, |Occ*(, P)| = 1

Frequency of P = 2 ・ 2 + 1 = 5

Xi1
Xi1

Computing the Number of Crossing Occurrences

23

For all Xi =Xl Xr, let ti = sl pr

pr is the length-(q-1) prefix of Xr

sl is the length-(q-1) suffix of Xlwhere

・・・・

Xi

Xl Xr

q-1 q-1

sl pr
the number of occurrences of q-gram in ti
equals to that of crossing occurrences in Xi. ti =

|Occ*(Xi, ti[j .. j+q-1])| = |Occ(ti, ti[j .. j+q-1])|

Lemma 2

for P ∈ Σq,

where 1 ≦ j ≦ |ti|-q+1

|Occ(T,P)| =
n

∑
i=1

|Occ(ti,P)| · vOcc(Xi)

Algorithm for SLP q-gram Frequencies Problem

24

SLP q-gram Frequencies Problem
can be solved in O(qn) time and space.

Theorem 1

Idea:
Using the suffix array of the concatenation of all ti’s,
plus a linear-time construction algorithm of suffix arrays,
we can solve the SLP q-gram frequency problem in O(qn) time.

Algorithm for q-gram
Non-overlapping Frequencies Problem

25

26

Xi

Xl Xr

How to deal with crossing occurrences
✦ A crossing occurrence of P in Xi may overlap a crossing

occurrence of P in another variable Xl.

P
P

26

Xi

Xl Xr

How to deal with crossing occurrences
✦ A crossing occurrence of P in Xi may overlap a crossing

occurrence of P in another variable Xl.

P
P

✦ our strategy is that for string P which crosses Xi,
✦ we compute the interval of maximum chain of overlapping

occurrences of P.
✦ we count nOcc in its interval only if the interval cannot be

extended either to the left or right.

Longest Overlapping Cover on SLP

27
locq of “aba” in X6

X2 X1

b a a ab b a b a

X4

X1 X2
X3

X2 X1
X4

X5
X1

X6
X7

X9

a b

X1 X2
X3

X2 X1
X4

X8

Longest Overlapping Cover on SLP

28
locq of “aba” in X9

✦ Notice that locq in the variable Xi may or may not extend in Xi’s ancestor.

X2 X1

b a a ab b a b a

X4

X1 X2
X3

X2 X1
X4

X5
X1

X6
X7

X9

a b

X1 X2
X3

X2 X1
X4

X8

Longest Overlapping Cover on SLP

29
locq of “aba” in X9

X2 X1

b a a ab b a b a

X4

X1 X2
X3

X2 X1
X4

X5
X1

X6
X7

X9

a b

X1 X2
X3

X2 X1
X4

X8

≧ q - 1 ≧ q - 1

“aba” never overlap in
 the ancestor of X9

Longest Overlapping Cover on SLP

30

Lemma 4

nOcc(T,P) =
n

∑
i=1

nOcc(Xi[b : e],P) · vOcc(Xi)

where (b, e) is locq of P in T, and [b-q+1 : e+q-1] crosses Xi
(0 < b-q+1 ≦ |Xl| ≦ e+q-1 ≦ |Xi|)

✦ Let (b, e) is a pair of beginning and ending point of locq in the
variable Xi, we obtain this lemma

31

Lemma 5
For all variables Xi = Xl Xr, and integer |Xl| - (2q-1) ≦ j ≦ |Xl|+q-1,
locq(Xi, j) = (b, e) and nOcc(Xi[b:e], Xi[j : j+q-1] can be
computed in O(q2n) time and O(qn) space.

Theorem 2
Non-overlapping frequencies problem on SLP can be solved in O(q2n)
time and O(qn) space.

Summary

32

Uncompressed
String

SLP
(Previous Work)

q-gram Freq O(|T |)
time and space

O(qn)
time and space

2-gram non-
overlapping Freq

O(|T |)
time and space

O(n4 log n) time
O(n3) space

q-gram non-
overlapping Freq

O(|T |)
time and space -

[2]

[1]

SLP
(This Work)

-

O(n)
 time and space

O(q2n) time
O(qn) space

[Inenaga and Bannai, 2009][1]
[2] [Goto et al, 2011]

33

Thank you for
　　　　your attention

34

Xi
Xl Xr

② locq in Xl ③ locq in Xl

max LnOcc of ② min RnOcc of ③

nOcc within loc = nOcc within ② + nOcc within ③
 + nOcc within ①

①

nOcc in locq

no q-gram頻度の重み付け

35

なにもしない

重み 0 重み
P : vOcc(Xi) *
 locqのno頻度

重み
P : vOcc(Xi) * locqのno頻度

Xi

Xl Xr Xl Xr Xl Xr

• すべての変数で対応する locq の範囲が確定した q-gram の
重み付けを行う

locq

Xi Xi

≧ q-1 ≧ q-1
locq

≧ q-1 ≧ q-1
locq

< q-1

locqの範囲が確定 locqの範囲が確定
対応するq-gramがまたがる 対応するq-gramがまたがらない

PP P
< q-1

no q-gram頻度の重み付け

36

Xi

Xl Xr

≧ q-1 ≧ q-1lscq lpcq

LnOccの最大値 RnOccの最小値

locのno頻度 = lscのno頻度 + lpcのno頻度 + ①の範囲のno頻度

①

全ての変数についてlocqのno頻度を求めることで
SLP no頻度問題を O(q2n) で解くことが出来る

各変数に対しまたがるq-gramは
O(q2)でlocqのno頻度を求めることが可能

37

Xi
Xl Xr

≧ q-1 ≧ q-1locq locq

maximum of LnOcc minimum of RnOcc

nOcc within loc= nOcc within loc + nOcc within loc
 + nOcc within range of ①

①

bb
be

ee
eb

38

✦ For all variables Xi, we count non-overlapping frequencies of loc
which crosses Xi rather than q-gram which crosses Xi

Xi

Xl Xr

Crossing Occurrence

loc(Xi, j)
eb

39

Crossing Occurrence

Xi

Xl Xr

loc(Xi, j)
eb

We count the crossing
 interval [b-q+1:e+q-1]

✦ For all variables Xi, we count non-overlapping frequencies of loc
which crosses Xi rather than q-gram which crosses Xi

If b < q or |Xi|-q < e,
loc can be overlaped the q-gram
crossing in Xi’s ancestor

40

Xi

Xl Xr

✦ overlapping algorithm doesn’t care whether or not a q-gram
which crosses in Xi is overlapping the same q-gram in Xl or Xr

Difference of Algorithm for
 Overlapping Frequencies Problem

P
P P

non-overlapping frequency of P is 2,
but algorithm count 3 time Xi, Xl, Xr

41

✦ Important Key is that non-overlapping frequency depend on the
way of overlapping in the chain of overlapping

Xi

Xl Xr

P
P P

P P

Difference of Algorithm for
 Overlapping Frequencies Problem

We want to know
・the interval of the maximum chain of
overlapping occurrences of q-gram
・non-overlapping frequency in the interval

Longest Overlapping Cover

42

locq(T, j) = (b, e) is the beginning and ending positions of the
maximum chain of overlapping occurrences of q-gram T [j : j + q - 1]

longest overlapping cover

j

T

Longest Overlapping Cover

42

locq(T, j) = (b, e) is the beginning and ending positions of the
maximum chain of overlapping occurrences of q-gram T [j : j + q - 1]

longest overlapping cover

j

T

Longest Overlapping Cover

42

locq(T, j) = (b, e) is the beginning and ending positions of the
maximum chain of overlapping occurrences of q-gram T [j : j + q - 1]

longest overlapping cover

j

T

Longest Overlapping Cover

42

locq(T, j) = (b, e) is the beginning and ending positions of the
maximum chain of overlapping occurrences of q-gram T [j : j + q - 1]

longest overlapping cover

j

T

locq(T, j) = (b, e)

b e

43

Xi

Xl Xr

✦ overlapping algorithm doesn’t care whether or not a q-gram
which crosses in Xi is overlapping the same q-gram in Xl or Xr

Difference of Algorithm for
 Overlapping Frequencies Problem

P
P P

non-overlapping frequency of P is 2,
but algorithm count 3 time Xi, Xl, Xr

44

✦ Important Key is that non-overlapping frequency depend on the
way of overlapping in the chain of overlapping

Xi

Xl Xr

P
P P

P P

Difference of Algorithm for
 Overlapping Frequencies Problem

We want to know
・the interval of the maximum chain of
overlapping occurrences of q-gram
・non-overlapping frequency in the interval

